❶ 知乎:SQL、R语言、python对没有计算机背景的人来说先学习哪个比较好
你是想做数据分析对吧?
建议啊,先学R,R能应付很多统计问题了
再去学python,python语法当然了必须先掌握,这个很简单,然后就是python有两个
跟数据分析密切相关的包,如果你想做数据分析,请把重点放在两个包上
再学sql吧,毕竟单纯的学sql没有什么意义,因为什么也做不了
sql 建议先学sql server,有了python的语法基础学sqlserver很简单,当然没有基础也能学,只是有一门语言基础学起来更容易
学完sql server 再学oracle,oracle一定要学,其他数据库根据需求来学,比如Nosql就非常好
❷ 编程语言有哪些学习顺序是什么
编程先学逻辑,就是先执行什么后执行什么,能得出什么样的结果。接下来是学语法,比如for,if,while这些,都是根据不同语种学习不同的内容;到了高阶就开始学习算法,因为算法可以协助做自己的框架,引擎等。用简单的话来说,编程就是学习。一门计算机语言好比大家学习英文是为了跟外国人打交道,学习编程,就是跟计算机打交道。编程学习的内容有:C语言、Python、C++、Java Script、Java、Swift、R等。
1、C 语言:C 语言作为一种简单灵活的高级编程语言,它是一个面向过程的语言,一般是作为计算机专业的基础入门语言课程。
2、Python:Python是一种面向对象、交互式计算机程序设计语言。它的特点是语法简捷而清晰。由于它的易学、易读的特性,有些学校用它代替C语言作为基础入门的语言。同时Python且具有丰富和强大的类库,基本上能胜任平时需要的编程工作,而且它对一些新兴的技术例如大数据、机器学习等也有较好的支持 。
3、C++:C++语言保留了C语言的有效性、灵活性等特点,又添加了面向对象编程的支持,具有强大的编程功能,可方便地模拟现实问题的过程和操作。
❸ r和python哪个容易入门
如果只想学一个语言的话,还是推荐python。从我身边人的情况来看,很多学了很多R的人最后都选择再去多学一门python,包括我自己也是,而python很厉害的人却没听说过会来学R。(推荐学习:Python视频教程)
我其实学python是冲着爬虫来的,然后顺便学了一下python的数据分析。让我感触最深的是python的规整统一,语法优雅。比如各种机器学习算法在python中使用方法完全是同一个套路,训练预测检验都是一样的方法,这极大地减少了学习的成本。在这点上R就显得很乱,R包虽然很多很全,但是重复太多,调用方法都不一样,学习成本骤然上升。
不过R也有python无法比拟的优势。总结起来就是R更方便。
第一,绘图。
python的绘图基本上都是基于matplotpb库,其他库很多都和这个关联。这个库的绘图灵活性非常强大不可否认,即想调哪里都可以做到,但是每次画一个简单的图形都要写一大堆代码就很麻烦。
第二,数据分析函数的调用。
因为数据科学只是python的一个分支,所以数据科学的数据类型不是python内置的类型,而是放在几个库里面的,每次使用都要加载库,加载要使用的函数,这在我看来是比较麻烦的。
总结起来,python语法的设计更加规范,用户可以更自由地实现自己的想法,但是它帮你实现的东西会比R少一些。因为更加灵活所以只学一个语言就推荐这个,否则学R语言的话,有时候会觉得不够用就很难受。
用一个比喻来说明就是,python好比给了你一把非常好的鱼竿,你可以钓取任何你想要吃的鱼(但是要你自己钓),R好比给了你一把没那么好用的鱼竿,还附加吃不完的鲤鱼、鲫鱼,你可以只吃这两种鱼,但是你想吃草鱼就要费比较大的功夫才能吃到。为了防止误导,加入C语言的对比,C语言就是鱼竿也要你自己造。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于r和python哪个容易入门的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
❹ 没学过Python和R语言的人,应该先学哪一个
Python和R语言各有特点,选择学习哪一种,取决于个人需求和目标。Python用途广泛,适用于数据分析、机器学习、Web开发等多个领域,而R语言则在统计建模和机器学习方面更为人熟知。
从学习曲线来看,Python以其易学性受到初学者的青睐。相比之下,R语言的学习曲线较陡峭,但一旦掌握,可以处理更复杂的统计模型。这意味着,如果你是编程新手,Python可能是一个更好的起点。
社区支持也是选择编程语言时的重要因素之一。Python拥有庞大的开发者社区,遇到问题时更容易找到解决方案。虽然R语言的社区规模较小,但它同样提供了丰富的资源。
数据管道和模型部署也是选择编程语言时需要考虑的因素。大多数公司的数据管道是用Python构建的,用Python部署模型也更为便捷。这表明,如果你希望在实际工作中更轻松地处理数据,Python可能更适合你。
综上所述,如果你更关注编程语言的普及程度、易学性和社区支持,建议先学Python。而如果你更看重在统计建模和机器学习领域的应用,以及模型的部署,那么R语言可能更适合你。
❺ 数据科学入门丨选Python还是R
数据科学入门丨选Python还是R
对于想入门数据科学的新手来说,选择学Python还是R语言是一个难题,本文对两种语言进行了比较,希望能帮助你做出选择。
我是德勤的数据科学家主管,多年来我一直在使用Python和R语言,并且与Python社区密切合作了15年。本文是我对这两种语言的一些个人看法。
第三种选择
针对这个问题,Studio的首席数据科学家Htley Wickham认为,比起在二者中选其一,更好的选择是让两种语言合作。因此,这也是我提到的第三种选择,我在文本最后部分会探讨。
如何比较R和Python
对于这两种语言,有以下几点值得进行比较:
· 历史:
R和Python的发展历史明显不同,同时有交错的部分。
· 用户群体:
包含许多复杂的社会学人类学因素。
· 性能:
详细比较以及为何难以比较。
· 第三方支持:
模块、代码库、可视化、存储库、组织和开发环境。
· 用例:
根据具体任务和工作类型有不同的选择。
· 是否能同时使用:
在Python中使用R,在R中使用Python。
· 预测:
内部测试。
· 企业和个人偏好:
揭晓最终答案。
历史
简史:
ABC语言 - > Python 问世(1989年由Guido van Rossum创立) - > Python 2(2000年) - > Python 3(2008年)
Fortan语言 - > S语言(贝尔实验室) - > R语言问世(1991年由Ross Ihaka和Robert Gentleman创立) - > R 1.0.0(2000年) - > R 3.0.2(2013年)
用户群体
在比较Python与R的使用群体时,要注意:
只有50%的Python用户在同时使用R。
假设使用R语言的程序员都用R进行相关“科学和数字”研究。可以确定无论程序员的水平如何,这种统计分布都是真实。
这里回到第二个问题,有哪些用户群体。整个科学和数字社区包含几个子群体,当中存在一些重叠。
使用Python或R语言的子群体:
· 深度学习
· 机器学习
· 高级分析
· 预测分析
· 统计
· 探索和数据分析
· 学术科研
· 大量计算研究领域
虽然每个领域几乎都服务于特定群体,但在统计和探索等方面,使用R语言更为普遍。在不久之前进行数据探索时,比起Python,R语言花的时间更少,而且使用Python还需要花时间进行安装。
这一切都被称为Jupyter Notebooks和Anaconda的颠覆性技术所改变。
Jupyter Notebook:增加了在浏览器中编写Python和R代码的能力;
Anaconda:能够轻松安装和管理Python和R。
现在,你可以在友好的环境中启动和运行Python或R,提供开箱即用的报告和分析,这两项技术消除了完成任务和选择喜欢语言间的障碍。Python现在能以独立于平台的方式打包,并且更快地提供快速简单的分析。
社区中影响语言选择的另一个因素是“开源”。不仅仅是开源的库,还有协作社区对开源的影响。讽刺的是,Tensorflow和GNU Scientific Library等开源软件(分别是Apache和GPL)都与Python和R绑定。虽然使用R语言的用户很多,但使用Python的用户中有很多纯粹的Python支持者。另一方面,更多的企业使用R语言,特别是那些有统计学背景的。
最后,关于社区和协作,Github对Python的支持更多。如果看到最近热门的Python包,会发现Tensorflow等项目有超过3.5万的用户收藏。但看到R的热门软件包,Shiny、Stan等的收藏量则低于2千。
性能
这方面不容易进行比较。
原因是需要测试的指标和情况太多。很难在任何一个特定硬件上测试。有些操作通过其中一种语言优化,而不是另一种。
循环
在此之前让我们想想,如何比较Python与R。你真的想在R语言写很多循环吗?毕竟这两种语言的设计意图不太相同。
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as npn",
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def do_loop(u1):n",
"n",
" # Initialize `usq`n",
" usq = {}n",
"n",
" for i in range(100):n",
" # i-th element of `u1` squared into `i`-th position of `usq`n",
" usq[i] = u1[i] * u1[i]n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%%Rn",
"do_loop <- function(u1) {n",
" n",
" # Initialize `usq`n",
" usq <- 0n",
"n",
" for(i in 1:100) {n",
" # i-th element of `u1` squared into `i`-th position of `usq`n",
" usq[i] <- u1[i]*u1[i]n",
" }n",
"n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.58 ms ± 42.8 ?s per loop (mean ± std. dev. of 7 runs, 1000 loops each)n"
]
}
],
"source": [
"%%timeit -n 1000n",
"%%Rn",
"u1 <- rnorm(100)n",
"do_loop(u1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36.9 ?s ± 5.99 ?s per loop (mean ± std. dev. of 7 runs, 1000 loops each)n"
]
}
],
"source": [
"%%timeit -n 1000n",
"u1 = np.random.randn(100)n",
"do_loop(u1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Python为0.000037秒,R为0.00158秒
包括加载时间和在命令行上运行:R需要0.238秒,Python需要0.147秒。强调,这并不是科学严谨的测试。
测试证明,Python的运行速度明显加快。通常这并没有太大影响。
除了运行速度外,对于数据科学家而言哪种性能更重要?两种语言之所以受欢迎是因为它们能被用作命令语言。例如,在使用Python时大多时候我们都很依赖Pandas。这涉及到每种语言中模块和库,以及其执行方式。
第三方支持
Python有PyPI,R语言有CRAN,两者都有Anaconda。
CRAN使用内置的install.packages命令。目前,CRAN上有大约1.2万个包。其中超过1/2的包都能用于数据科学。
PyPi中包的数量超过前者的10倍,约有14.1万个包。专门用于科学工程的有3700个。其中有些也可以用于科学,但没有被标记。
在两者中都有重复的情况。当搜索“随机森林”时,PyPi中可以得到170个项目,但这些包并不相同。
尽管Python包的数量是R的10倍,但数据科学相关的包的数量大致相同。
运行速度
比较DataFrames和Pandas更有意义。
我们进行了一项实验:比较针对复杂探索任务的执行时间,结果如下:
在大多数任务中Python运行速度更快。
http://nbviewer.jupyter.org/gist/brianray/
可以看到,Python + Pandas比原生的R语言DataFrames更快。注意,这并不意味着Python运行更快,Pandas 是基于Numpy用C语言编写的。
可视化
这里将ggplot2与matplotlib进行比较。
matplotlib是由John D. Hunter编写的,他是我在Python社区中最敬重的人之一,他也是教会我使用Python的人。
Matplotlib虽然不易学习但能进行定制和扩展。ggplot难以进行定制,有些人认为它更难学。
如果你喜欢漂亮的图表,而且无需自定义,那么R是不错的选择。如果你要做更多的事情,那么Matplotlib甚至交互式散景都不错。同样,R的ShinnyR能够增加交互性。
是否能同时使用
可能你会问,为什么不能同时使用Python和R语言?
以下情况你可以同时使用这两种语言:
· 公司或组织允许;
· 两种都能在你的编程环境中轻松设置和维护;
· 你的代码不需要进入另一个系统;
· 不会给合作的人带来麻烦和困扰。
一起使用两种语言的方法是:
· Python提供给R的包:如rpy2、pyRserve、Rpython等;
· R也有相对的包:rPython、PythonInR、reticulate、rJython,SnakeCharmR、XRPython
· 使用Jupyter,同时使用两者,例子如下:
之后可以传递pandas的数据框,接着通过rpy2自动转换为R的数据框,并用“-i df”转换:
http://nbviewer.jupyter.org/gist/brianray/
预测
Kaggle上有人对开发者使用R还是Python写了一个Kernel。他根据数据发现以下有趣的结果:
· 如果你打算明年转向Linux,则更可能是Python用户;
· 如果你研究统计数据,则更可能使用R;如果研究计算机科学,则更可能使用Python;
· 如果你还年轻(18-24岁),则更可能是Python用户;
· 如果你参加编程比赛,则更可能是Python用户;
· 如果你明年想使用Android,则更可能是Python用户;
· 如果你想在明年学习SQL,则更可能是R用户;
· 如果你使用MS office,则更可能是R用户;
· 如果你想在明年使用Rasperry Pi,则更可能是Python用户;
· 如果你是全日制学生,则更可能是Python用户;
· 如果你使用的敏捷方法(Agile methodology),则更可能是Python用户;
· 如果对待人工智能,比起兴奋你更持担心态度,则更可能是R用户。
企业和个人偏好
当我与Googler和Stack Overflow的大神级人物Alex Martelli交流时,他向我解释了为什么Google最开始只官方支持少数几种语言。即使是在Google相对开发的环境中,也存在一些限制和偏好,其他企业也是如此。
除了企业偏好,企业中第一个使用某种语言的人也会起到决定性作用。第一个在德勤使用R的人他目前仍在公司工作,目前担任首席数据科学家。我的建议是,选择你喜欢的语言,热爱你选择的语言,起到领导作用,并热爱你的事业。
当你在研究某些重要的内容时,犯错是难以避免的。然而,每个精心设计的数据科学项目都为数据科学家留有一些空间,让他们进行实验和学习。重要的是保持开放的心态,拥抱多样性。
最后就我个人而言,我主要使用Python,之后我期待学习更多R的内容。