‘壹’ 【python接口测试-1】登录接口获取token和uuid
所有接口测试都离不开登录接口获取的用户信息,无论是使用JMeter、APIPost还是Python,登录接口的调试都是首要步骤。在学习Python和unittest时,从项目开始,边实践边探索,这里推荐菜鸟教程作为入门资源。
之前关于JMeter和ApiPost的文章里,同样调试了登录接口。登录接口的参数和返回数据可以通过Fiddler抓包查看。登录接口返回的json数据包含uuid和token,这两个信息作为用户认证数据,需要在所有接口测试中的header中引用。为此,编写代码提取uuid和token,并将其拼接到header中。
在编码过程中,将环境信息、常用用户信息等存储为常量,便于在编码时直接引用。创建了settings文件夹以存放这些常量。编写unittest测试类(testman.py)来调用接口和公共方法。实现登录接口调试和获取uuid、token的过程,封装在common模块的get_header.py文件中。
具体步骤包括定义login_url、设置header和data参数,并调用post方法。login_url引用settings文件中的环境信息。在headers参数中添加固定的头部信息,如Referer,否则可能导致请求失败。data参数以字典形式包含用户信息,考虑到不同项目登录参数的差异,进行了适当的if判断。通过res_data接收调用post方法返回的数据,但由于数据格式为字符串,直接使用json()方法获取token信息不适用,需要先将字符串转换为字典格式。
转换字符串为字典推荐使用ast.literal_eval()方法,确保安全且高效。获取到转换后的数据后,将uuid和token追加到header中。之后,使用这个包含uuid和token信息的header调用后续的业务接口。
以上步骤涵盖了从登录接口调试到获取uuid和token,以及如何将这些信息应用在其他接口测试中的全过程。有兴趣了解更多细节,欢迎访问相关文章。
‘贰’ 如何用python开发移动App后台需要掌握哪些技术
1、如果使用python语言,需要学习哪些知识?
python作为一门简单明了的语言,非常容易上手,语言层面不会太复杂,稍微有点难度的顶多就是装饰器、元类和少量函数式编程内容。要说学习的话,我觉得更多是一些编程方面通用的东西,比如:数据结构和算法、设计模式、操作系统、计算机网络之类的
2、选择什么样的python框架开发,这个框架的优势?
tornado,因为非阻塞io的原因,性能非常高,特别适合写后端API(App的后端应该都是rest风格的api),而且成熟稳定
3、如何部署服务器?本地服务器调试,以及公网服务器部署?
这个一两句说不清楚,涉及到运维、测试、开发诸多方面, 部署和测试推荐几个包:fabric、nose、unittest(python自带),版本管理推荐git,持续集成推荐使用docker+jenkins
4、如果使用python框架开发移动后台服务,在开发源码内使用哪种框架?mvc还是其它的,比如我返回json数据,每次json对象最外层有一些相同的东西,该如何处理?
MVC什么的,一般的框架都差不多的,tornado也是支持的,返回json有相同的东西,写个修饰器就完了
5、python的后台服务最大能支持多大的pv量会严重影响用户体验性能?
youtube、reddit、豆瓣、知乎这样的大流量网站都是python写的,觉得你的App的规模不太可能遇到性能问题,即使有也应该不是python的问题,而是任何语言都会有问题。毕竟web后端不是计算密集型,而是io密集型的,python和其他语言的区别不会太大吧,大量的pv是可以靠堆服务器堆出来的,如果是计算量比较大的任务,你可以考虑用c或c++写
6、如何兼顾 网页前端以及移动端 开发的后台?
用python写的API,网页和移动端都是可以调用啊,让前端学学React,就可以轻松解决前后端分离这个问题(PS: facebook 就是后端php + 前端React,淘宝也有在用nodejs做前后端分离)
7、有没用相关的案例,即用python开发的移动后台?有没有该问题的开源项目?
这个应该比较少,App后端开源的不常见,而且大部分是rest风格的api,很多时候会涉及到自身的业务和敏感信息应该不会开源的吧(又不是bbs或者博客程序)
‘叁’ 自动化测试工具有哪些
自动化测试工具有如下几种:
1、WinRunner
Mercury Interactive公司的WinRunner是一种企业级的功能测试工具,用于检测应用程序是否能够达到预期的功能及正常运行。
通过自动录制、检测和回放用户的应用操作,WinRunner能够有效地帮助测试人员对复杂的企业级应用的不同发布版进行测试,提高测试人员的工作效率和质量,确保跨平台的、复杂的企业级应用无故障发布及长期稳定运行。企业级应用可能包括Web应用系统,ERP系统,CRM系统等等。
2、Rational Robot
是业界最顶尖的功能测试工具,它甚至可以在测试人员学习高级脚本技术之前帮助其进行成功的测试。它集成在测试人员的桌面IBM Rational Test Manager上,在这里测试人员可以计划、组织、执行、管理和报告所有测试活动,包括手动测试报告。
这种测试和管理的双重功能是自动化测试的理想开始。
3、AdventNet QEngine
AdventNet QEngine是一个应用广泛且独立于平台的自动化软件测试工具,可用于Web功能测试、web性能测试、Java应用功能测试、Java API测试、SOAP测试、回归测试和Java应用性能测试。
支持对于使用HTML、JSP、ASP、.NET、PHP、JavaScript/VBScript、XML、SOAP、WSDL、e-commerce、传统客户端/服务器等开发的应用程序进行测试。此工具以Java开发,因此便于移植和提供多平台支持。
4、SilkTest
是业界领先的、用于对企业级应用进行功能测试的产品,可用于测试Web、Java或是传统的C/S结构。SilkTest提供了许多功能,使用户能够高效率地进行软件自动化测试。
这些功能包括:测试的计划和管理;直接的数据库访问及校验;灵活、强大的4Test脚本语言,内置的恢复系统(Recovery System);以及具有使用同一套脚本进行跨平台、跨浏览器和技术进行测试的能力。
5、QA Run
QARun的测试实现方式是通过鼠标移动、键盘点击操作被测应用,即而得到相应的测试脚本,对该脚本可以进行编辑和调试。在记录的过程中可针对被测应用中所包含的功能点进行基线值的建立,换句话说就是在插入检查点的同时建立期望值。
在这里检查点是目标系统的一个特殊方面在一特定点的期望状态。通常,检查点在QARun提示目标系统执行一系列事件之后被执行。检查点用于确定实际结果与期望结果是否相同
‘肆’ 常用的自动化测试工具有哪些
1、Appium
AppUI自动化测试
Appium 是一个移动端自动化测试 开源工具,支持iOS 和Android 平台,支持Python、Java 等语言,即同一套Java 或Python 脚本可以同时运行在iOS 和Android平台,Appium 是一个C/S 架构,核心是一个 Web 服务器,它提供了一套 REST 的接口。当收到客户端的连接后,就会监听到命令,然后在移动设备上执行这些命令,最后将执行结果放在 HTTP 响应中返还给客户端。
2、Selenium
WebUI自动化测试
Selenium是一个用于Web应用程序测试的工具,Selenium已经成为Web自动化测试工程师的首选。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7、8、9)、Mozilla Firefox、Mozilla Suite等。这个工具的主要功能包括:测试与浏览器的兼容性——测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上。测试系统功能——创建回归测试检验软件功能和用户需求。支持自动录制动作和自动生成 .Net、Java、Perl等不同语言的测试脚本。Selenium 是ThoughtWorks专门为Web应用程序编写的一个验收测试工具。其升级版本为Webdriver。
3、Postman
接口测试
Postman 提供功能强大的 Web API 和 HTTP 请求的调试,它能够发送任何类型的HTTP 请求 (GET, POST, PUT, DELETE…),并且能附带任何数量的参数和 Headers。不仅如此,它还提供测试数据和环境配置数据的导入导出,付费的 Post Cloud 用户还能够创建自己的 Team Library 用来团队协作式的测试,并能够将自己的测试收藏夹和用例数据分享给团队。
4.Robot Framework
Robot Framework是一个开源自动化框架,它实现了用于验收测试和验收测试驱动开发(ATDD)的关键字驱动方法。 Robot Framework为不同的测试自动化需求提供框架。 但是,通过使用Python和Java实现其他测试库,可以进一步扩展其测试功能。 Selenium WebDriver是Robot Framework中常用的外部库。
测试工程师可以利用Robot Framework作为自动化框架,不仅可以进行Web测试,还可以用于Android和iOS测试自动化。 对于熟悉关键字驱动测试的测试人员,可以轻松学习Robot Framework。
5、Soapui
接口测试
SoapUI提供了所有所需的工具来测试和完善的测试。总览标签给你一个项目的所有内容和全面的看法。只需一次点击,您可以添加任何数量的断言为验证传入的消息TestStep。使用功能强大的HTTP监视器记录,分析甚至修改客户机 - 服务器通信,因为它发生。和SoapUI临带来了更专业和先进的功能,保持遥遥领先其他测试工具。轻松创建和运行数据驱动测试。该数据源TestStep读取测试数据从任何外部来源 - Excel中,XML,JDBC,文件,等等 - 到标准SoapUI属性。
针对上面的自动化测试工具,每一个都有自己优势的功能,随着计算机行业的发展,自动化测试工具会越来越多,越来越完善。
‘伍’ Python自动化测试框架有哪些
分享一些可用的Python自动化测试框架。
自动化测试常用的Python框架有哪些?常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用于功能与单元测试,Lettuce和Behave仅适用于行为驱动测试。
一、Robot Framework
Python测试框架之一,Robot Framework被用在测试驱动(test-driven)类型的开发与验收中。虽然是由Python开发而来,但是它也可以在基于.Net的IronPython和基于Java的Jython上运行。作为一个Python框架,Robot还能够兼容诸如Windows、MacOS、以及Linux等平台。
在使用Robot Framework(RF)之前,需要先安装Python 2.7.14及以上的版本。推荐使用Python 3.6.4,以确保适当的注释能够被添加到代码段中,并能够跟踪程序的更改。同时还需要安装Python包管理器--pip。
二、Pytest
适用于多种软件测试的Pytest,是另一个Python类型的自动化测试框架。凭借着其开源和易学的特点,该工具经常被QA(质量分析)团队、开发团队、个人团队、以及各种开源项目所使用。鉴于Pytest具有“断言重写(assert rewriting)”之类的实用功能,许多大型互联网应用,如Dropbox和Mozilla,都已经从下面将要提到的unittest(Pyunit)切换到了Pytest之上。
除了基本的Python知识,用户并不需要更多的技术储备。另外,用户只需要有一台带有命令行界面的测试设备,并且安装好了Python包管理器、以及可用于开发的IDE工具。
三、UnitTest/PyUnit
UnitTest/PyUnit一种标准化的针对单元测试的Python类自动化测试框架。基类TestCase提供了各种断言方法、以及所有清理和设置的例程。因此,TestCase子类中的每一种方法都是以“test”作为名词前缀,以标识它们能够被作为测试用例所运行。用户可以使用load方法和TestSuite类来分组、并加载各种测试。
可以通过联合使用,来构建自定义的测试运行器。正如我们使用Junit去测试Selenium那样,UnitTest也会用到UnitTest-sml-reporting、并能生成各种XML类型的报告。由于UnitTest默认使用了Python,因此我们并不需要什么先决条件。除了需要具备Python框架的基本知识,您也可以额外地安装pip、以及用于开发的IDE工具。
四、Behave
行为驱动开发是一种基于敏捷软件开发的方法。它能够鼓励开发人员、业务参与者和QA人员,三者之间的协作。Python测试框架Behave允许团队避开各种复杂的情况,去执行BDD测试。从本质上说该框架与SpecFlow和Cucumber相似,常被用于执行自动化测试。用户可以通过简单易读的语言来编写测试用例,并能够在其执行期间粘贴到代码之中。而且,那些被设定的行为规范与步骤,也可以被重用到其他的测试方案中。
任何具备Python基础知识的人都可以使用Behave。其他先决条件还包括:先安装Python 2.7.14及以上的版本。通过Python包管理器或pip来与Behave协作。大多数开发人员会选择Pycharm作为开发环境,当然您也可以选用其他的IDE工具。
五、Lettuce
Lettuce是另一种基于Cucumber和Python的行为驱动类自动化工具。Lettuce主要专注于那些具有行为驱动开发特征的普通任务。它不但简单易用,而且能够使得整个测试过程更流畅、甚至更有趣。安装带有IDE的Python 2.7.14、及以上的版本。当然,您也可以使用Pycharm或任何其他IDE工具。同时,您还需要安装Python包管理器。
自动化测试的Python框架,Pytest、Robot Framework和UnitTest可主要用于功能与单元测试,而Lettuce和Behave仅适用于行为驱动测试。对于功能测试而言,Pytest是的。如果您是基于Python自动化测试的新手,Robot Framework是的入门工具。虽然其功能有所受限,但是它非常容易上手。对于基于Python的BDD测试而言,Lettuce和Behave同样优秀。不过,如果你已经有了一定的Pytest经验,那么请使用Pytest-bdd。
‘陆’ 使用python做接口自动化测试容易吗
为什么要做接口自动化测试?
在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。
为什么要自己写框架呢?
使用Postman调试通过过直接可以获取接口测试的基本代码,结合使用requets + unittest很容易实现接口自动化测试的封装,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),可以进一步提高脚本编写效率。
一个现有的简单接口例子
下面使用requests + unittest测试一个查询接口
接口信息如下
请求信息:
Method:POST
URL:api/match/image/getjson
Request:
{
"category": "image",
"offset": "0",
"limit": "30",
"sourceId": "0",
"metaTitle": "",
"metaId": "0",
"classify": "unclassify",
"startTime": "",
"endTime": "",
"createStart": "",
"createEnd": "",
"sourceType": "",
"isTracking": "true",
"metaGroup": "",
"companyId": "0",
"lastDays": "1",
"author": ""
}
Response示例:
{
"timestamp" : xxx,
"errorMsg" : "",
"data" : {
"config" : xxx
}
Postman测试方法见截图:
测试思路
1.获取Postman原始脚本
2.使用requests库模拟发送HTTP请求**
3.对原始脚本进行基础改造**
4.使用python标准库里unittest写测试case**
原始脚本实现
未优化
该代码只是简单的一次调用,而且返回的结果太多,很多返回信息暂时没用,示例代码如下
import requests
url = "http://cpright.xinhua-news.cn/api/match/image/getjson"
querystring = {"category":"image","offset":"0","limit":"30","sourceId":"0","metaTitle":"","metaId":"0","classify":"unclassify","startTime":"","endTime":"","createStart":"","createEnd":"","sourceType":"","isTracking":"true","metaGroup":"","companyId":"0","lastDays":"1","author":""}
headers = { 'cache-control': "no-cache", 'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
}
response = requests.request("POST", url, headers=headers, params=querystring)
print(response.text)
优化 第一版
调整代码结构,输出结果Json出来,获取需要验证的response.status_code,以及获取结果校验需要用到的results['total']
#!/usr/bin/env python#coding: utf-8'''
unittest merchant backgroud interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''import unittestimport jsonimport tracebackimport requests
url = "http://cpright.xinhua-news.cn/api/match/image/getjson"
querystring = { "category": "image", "offset": "0", "limit": "30", "sourceId": "0", "metaTitle": "", "metaId": "0", "classify": "unclassify", "startTime": "", "endTime": "", "createStart": "", "createEnd": "", "sourceType": "", "isTracking": "true", "metaGroup": "", "companyId": "0", "lastDays": "1", "author": ""
}
headers = { 'cache-control': "no-cache", 'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
}#Post接口调用
response = requests.request("POST", url, headers=headers, params=querystring)#对返回结果进行转义成json串
results = json.loads(response.text)#获取http请求的status_codeprint "Http code:",response.status_code#获取结果中的total的值print results['total']#print(response.text)
优化 第二版
接口调用异常处理,增加try,except处理,对于返回response.status_code,返回200进行结果比对,不是200数据异常信息。
#!/usr/bin/env python#coding: utf-8'''
unittest merchant backgroud interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''import jsonimport tracebackimport requests
url = "http://cpright.xinhua-news.cn/api/match/image/getjson"
querystring = { "category": "image", "offset": "0", "limit": "30", "sourceId": "0", "metaTitle": "", "metaId": "0", "classify": "unclassify", "startTime": "", "endTime": "", "createStart": "", "createEnd": "", "sourceType": "", "isTracking": "true", "metaGroup": "", "companyId": "0", "lastDays": "1", "author": ""
}
headers = { 'cache-control': "no-cache", 'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
}try: #Post接口调用
response = requests.request("POST", url, headers=headers, params=querystring) #对http返回值进行判断,对于200做基本校验 if response.status_code == 200:
results = json.loads(response.text) if results['total'] == 191: print "Success" else: print "Fail" print results['total'] else: #对于http返回非200的code,输出相应的code raise Exception("http error info:%s" %response.status_code)except:
traceback.print_exc()