A. 好学编程:好用的python解释器有哪些这几款值得下载
Python作为一门广受欢迎的编程语言,其执行依赖于解释器。本文将介绍几种好用的Python解释器,帮助你找到适合下载的版本。
Python代码首先由解释器读取,经过词法分析、解析、编译和解释等步骤,最终转化为CPU可执行的指令。理解不同解释器的作用对于优化程序性能至关重要。
作为Python的官方实现,CPython是用C语言编写的,支持C扩展,适合跨平台使用,但更注重优化而非速度。
Pyston是CPython的一个性能优化版本,旨在提高大型应用的运行速度,但需要重新编译。
PyPy是基于RPython的即时编译器,能生成CPU直接执行的机器码,适合长时间运行的程序,但C扩展支持有限。
RustPython用Rust编写,支持WebAssembly,可在浏览器中运行,且有JIT编译器选项。
Stackless Python增强了CPython,支持微线程和通道,适用于需要并行任务的场景。
MicroPython适合嵌入式设备,内存和存储需求极低,但标准库较简。
不同解释器在性能上有所差异,适合的解释器取决于任务需求。你可以通过像http://pybenchmarks.org这样的网站进行对比。还有Nuitka这样的工具能将Python代码编译成机器码。
Python因其易学性和实用性广受欢迎。尝试不同解释器,尤其是对性能有高要求或特定平台使用时,将有助于提升开发效率。好学编程将持续分享更多编程知识,期待你的关注。
B. 如何看待Java绿色线程的相关应用效果
Java绿色线程到底是一个怎么回事呢?这些问题需要我们从本质中看问题 。下面我们就来看看Java绿色线程(Green Thread)是一个相对于操作系统线程(Native Thread)的概念 。
操作系统线程(Native Thread)的意思就是,程序里面的线程会真正映射到操作系统的线程,线程的运行和调度都是由操作系统控制的
Java绿色线程(Green Thread)的意思是,程序里面的线程不会真正映射到操作系统的线程,而是由语言运行平台自身来调度 。
当前版本的Python语言的线程就可以映射到操作系统线程 。当前版本的Ruby语言的线程就属于绿色线程,无法映射到操作系统的线程,因此Ruby语言的线程的运行速度比较慢 。
Java线程同步如何才能排除阻塞
Java线程函数关键代码详细讲述
Java线程同步引用基本代码介绍
Java线程控制权源代码的深入探讨
Java线程同步问题在实践中寻找答案
难道说,Java绿色线程要比操作系统线程要慢吗?当然不是这样 。事实上,情况可能正好相反 。Ruby是一个特殊的例子 。线程调度器并不是很成熟 。
目前,线程的流行实现模型就是Java绿色线程 。比如,stackless Python,就引入了更加轻量的绿色线程概念 。在线程并发编程方面,无论是运行速度还是并发负载上,都优于Python 。
另一个更着名的例子就是ErLang(爱立信公司开发的一种开源语言) 。
ErLang的Java绿色线程概念非常彻底 。ErLang的线程不叫Thread,而是叫做Process 。这很容易和进程混淆起来 。这里要注意区分一下 。
ErLang Process之间根本就不需要同步 。因为ErLang语言的所有变量都是final的,不允许变量的值发生任何变化 。因此根本就不需要同步 。
final变量的另一个好处就是,对象之间不可能出现交叉引用,不可能构成一种环状的关联,对象之间的关联都是单向的,树状的 。因此,内存垃圾回收的算法效率也非常高 。这就让ErLang能够达到Soft
Real Time(软实时)的效果 。这对于一门支持内存垃圾回收的语言来说,可不是一件容易的事情 。
C. python开发环境有哪些
PythonIDE工具是每个Python工程师必须使用的开发工具,选择正确的编辑器对Python编程效率的影响是非常大的,因此选择合适的Python开发工具十分重要,以下是通过长期实践发掘的好用的Python IDE,它们功能丰富,性能先进,能够帮助开发人员快速的进行应用程序开发。
1. Pydev + Eclipse – 最好的免费python IDEPydev的是Python IDE中使用最普遍的,原因很简单,它是免费的,同时还提供很多强大的功能来支持高效的Python编程。Pydev是一个运行在eclipse上的开源插件,它把python带进了eclipse的王国,如果你本来就是是一个eclipse的用户那么Pydev将给你家里一样的感觉。Pydev能高居榜首,得益于这些关键功能,包括Django集成、自动代码补全、多语言支持、集成的Python调试、代码分析、代码模板、智能缩进、括号匹配、错误标记、源代码控制集成、代码折叠、UML编辑和查看和单元测试整合等。虽然Pydev是最好的开源python IDE,但是 它也和另一个名为Liclipse的产品一起打包,Liclipse是一个商业产品,同样也构建在eclipse上,提供了易用性改进和额外的主题选项。除了python,Pydev也支持Jython and IronPython。2. PyCharm – 最好的商业python IDEPyCharm是专业的python集成开发环境,有两个版本。一个是免费的社区版本,另一个是面向企业开发者的更先进的专业版本。大部分的功能在免费版本中都是可用的,包括智能代码补全、直观的项目导航、错误检查和修复、遵循PEP8规范的代码质量检查、智能重构,图形化的调试器和运行器。它还能与IPythonnotebook进行集成,并支持Anaconda及其他的科学计算包,比如matplotlib和NumPy。PyCharm专业版本支持更多高级的功能,比如远程开发功能、数据库支持以及对web开发框架的支持等。
3. VIM
VIM是一个很先进的文本编辑器,在python开发者社区中很受欢迎。它是一个开源软件并遵循GPL协议,所以你可以免费的使用它。
虽然VIM是最好的文本编辑器,但是它提供的功能不亚于此,经过正确的配置后它可以成为一个全功能的Python开发环境。此外VIM还是一个轻量级的、模块化、快速响应的工具,非常适合那些很牛的程序员——编程从不用鼠标的人。
初始化配置需要花一定时间,因为你需要安装些VIM的插件,并配置让他们正常工作,最后你会发现这一切都是值得努力的。如果你在寻找一个linux系统下的python IDE,那么VIM将是你的不二选择。
4. Wing IDE
WingIDE是另外一个商业的、面向专业开发人员的python集成开发环境,可以运行在windows、OS X和Linux系统上,支持最新版本的python,包括stackless Python(python的增强版)。Wing IDE分三个版本:免费的基础版,个人版,以及更强大的专业版。
调试功能是Wing IDE的一大亮点,包括多线程调试,线程代码调试,自动子进程调试,断点,单步代码调试,代码数据检查等功能,此外还提供了在树莓派上进行远程调试的功能。
在代码管理方面,Wing IDE能非常灵活的与Git、subversion、perforce、cvs、Bazaar、Mercurial等工具集成。
此外,Wing IDE也支持其他更多的python框架,比如Maya、MotionBbuilder、Zope、PyQt、PySide、pyGTK、PySide、Django、matplotlib等等。
5. Spyder Python
SpyderPython是一个开源的python集成开发环境,非常适合用来进行科学计算方面的python开发。是一个轻量级的软件,是用python开发的,遵循MIT协议,可免费使用。
Spyderpython的基本功能包括多语言编辑器、交互式控制台、文件查看、variable explorer、文件查找、文件管理等。Spyder IDE也可以运行于windows、Mac 或者 Linux系统之上。
虽然Spyder是一个独立的集成开发环境,能运行在windows、MacOS 、MacOS X、Linux等系统之上。但是它也可以作为PyQT的扩展库,可以嵌入到PyQT的应用中去。
6. Komodo IDE
Komodo是Activestate公司开发的一个跨平台的集成开发环境,支持多种语言包括python。它是商用产品,但是提供了开源的免费版本叫Komodo Edit,能够安装在Mac、Windows 和Linux系统上。
全功能的Komodo对教育机构用户是免费的,老师和教授可以将其应用于实验室及教学中。学生也可以通过较低的费用得到Komodo的授权许可。
D. 下载安装python(x,y)后,点击spyder就跳出一个终端,终端消失后就没反应了
应该是python版本混乱了吧。
如果安装了两个python版本,PATH里只能添加一个,作为默认python使用,另一个只能通过全路径调用。
如果spyder只支持python2,你可以把python2作为默认的python,也就是把python2.7的路径添加到PATH里。而要使用stackless的时候,在cmd中输入完整的python路径,比如:
d://python3/bin/python
E. Python是什么
1、Python 介绍
学习一门新的语言之前,首先简单了解下这门语言的背景。Python 是一种面向对象的解释型计算机程序设计语言,由荷兰人 Guido van Rossum 于 1989 年发明,第一个公开发行版发行于 1991 年。Python 在设计上坚持了清晰划一的风格,这使得 Python 成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。Python 具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是 C/C++)很轻松地联结在一起。
2、Python 技术浪潮
IT行业热门技术,更新换代非常的快,技术的浪潮一波接着一波,最初的浪潮无疑是桌面时代,使用 C# 搭建桌面应用开始崭露头角,MFC 还是计算机科学专业必学会的东西。接着就是以网站搭建为应用的背景,PHP,Ruby 等语言为主的。再到近几年非常火热的以移动开发为应用背景,Java(Android 开发)或者 OC(iOS 开发)语言为主。很明显如今的浪潮就是以大数据和机器学习为应用背景,Python 语言为主。站在风尖浪口,猪都可以飞的起来。抓住这波技术浪潮,对于从事 IT 行业的人员来说有莫大的帮助。
3、Python 学习
学习一项新的技术,起步时最重要的是什么?就是快速入门。学习任何一个学科的知识时,都有一个非常重要的概念:最少必要知识。当需要获得某项技能的时候,一定要想办法在最短的时间里弄清楚都有哪些最少必要知识,然后迅速掌握它们。
对于快速入门 python 来说最少必要知识,有以下几点。
(1) Python 基础语法
找一本浅显易懂,例子比较好的教程,从头到尾看下去。不要看很多本,专注于一本。把里面的例程都手打一遍,搞懂为什么。推荐去看《简明python教程》,非常好的一本 Python 入门书籍。
(2)Python 实际项目
等你对 Python 的语法有了初步的认识,就可以去找些 Python 实际项目来练习。对于任何计算机编程语言来说,以实际项目为出发点,来学习新的技术,是非常高效的学习方式。在练习的过程中你会遇到各种各样的问题:基础的语法问题(关键字不懂的拼写),代码毫无逻辑,自己的思路无法用代码表达出来等等。这时候针对出现的问题,找到对应解决办法,比如,你可以重新查看书本上的知识(关于基础语法问题),可以通过谷歌搜索碰到的编译错误(编辑器提示的错误),学习模仿别人已有的代码(写不出代码)等等。已实际项目来驱动学习,会让你成长非常的快。Python 实际项目网上非常的多,大家可以自己去搜索下。合理利用网络资源,不要意味的只做伸手党。
(3) Python 的学习规划
当你把上面两点做好以后,你就已经入门了 Python,接下来就是规划好自己的以后的学习规划。能找到一个已经会 Python 的人。问他一点学习规划的建议,然后在遇到卡壳的地方找他指点。这样会事半功倍。但是,要学会搜索,学会如何更好地提问,没人会愿意回答显而易见的问题。当然如果你身边没有人会 Python,也可以在网上搜索相应的资料。
Python 可以做的事非常的多,比如:Python 可以做日常任务,比如自动备份你的MP3;可以做网站,很多着名的网站像知乎、YouTube 就是 Python 写的;可以做网络游戏的后台,很多在线游戏的后台都是 Python 开发的。每个人都有自己感兴趣的方向,有的对网站开发比较感兴趣,有的对数据处理感兴趣,有的对后台感兴趣。所以你们可以根据自己感兴趣的方向,网上搜索相关资料,加以深入的学习,规划好自己未来的方向。只要坚持,你就能精通 Python,成为未来抢手的人才。
F. python stackless 怎么多线程并发
1 介绍
1.1 为什么要使用Stackless
摘自stackless网站。
Note
Stackless Python 是Python编程语言的一个增强版本,它使程序员从基于线程的编程方式中获得好处,并避免传统线程所带来的性能与复杂度问题。Stackless为 Python带来的微线程扩展,是一种低开销、轻量级的便利工具,如果使用得当,可以获益如下:
改进程序结构
增进代码可读性
提高编程人员生产力
以上是Stackless Python很简明的释义,但其对我们意义何在?——就在于Stackless提供的并发建模工具,比目前其它大多数传统编程语言所提供的,都更加易用: 不仅是Python自身,也包括Java、C++,以及其它。尽管还有其他一些语言提供并发特性,可它们要么是主要用于学术研究的(如 Mozart/Oz),要么是罕为使用、或用于特殊目的的专业语言(如Erlang)。而使用stackless,你将会在Python本身的所有优势之 上,在一个(但愿)你已经很熟悉的环境中,再获得并发的特性。
这自然引出了个问题:为什么要并发?
1.1.1 现实世界就是并发的
现实世界就是“并发”的,它是由一群事物(或“演员”)所组成,而这些事物以一种对彼此所知有限的、松散耦合的方式相互作用。传说中面向对象编程有 一个好处,就是对象能够对现实的世界进行模拟。这在一定程度上是正确的,面向对象编程很好地模拟了对象个体,但对于这些对象个体之间的交互,却无法以一种 理想的方式来表现。例如,如下代码实例,有什么问题?
第一印象,没问题。但是,上例中存在一个微妙的安排:所有事件是次序发生的,即:直到丈夫吃完饭,妻子才开始吃;儿子则一直等到母亲吃完才吃;而女 儿则是最后一个。在现实世界中,哪怕是丈夫还堵车在路上,妻子、儿子和女儿仍然可以该吃就吃,而要在上例中的话,他们只能饿死了——甚至更糟:永远没有人 会知道这件事,因为他们永远不会有机会抛出一个异常来通知这个世界!
1.1.2 并发可能是(仅仅可能是)下一个重要的编程范式
我个人相信,并发将是软件世界里的下一个重要范式。随着程序变得更加复杂和耗费资源,我们已经不能指望摩尔定律来每年给我们提供更快的CPU了,当 前,日常使用的个人计算机的性能提升来自于多核与多CPU机。一旦单个CPU的性能达到极限,软件开发者们将不得不转向分布式模型,靠多台计算机的互相协 作来建立强大的应用(想想GooglePlex)。为了取得多核机和分布式编程的优势,并发将很快成为做事情的方式的事实标准。
1.2 安装stackless
安装Stackless的细节可以在其网站上找到。现在Linux用户可以通过SubVersion取得源代码并编译;而对于Windows用户, 则有一个.zip文件供使用,需要将其解压到现有的Python安装目录中。接下来,本教程假设Stackless Python已经安装好了,可以工作,并且假设你对Python语言本身有基本的了解。
2 stackless起步
本章简要介绍了stackless的基本概念,后面章节将基于这些基础,来展示更加实用的功能。
2.1 微进程(tasklet)
微进程是stackless的基本构成单元,你可以通过提供任一个Python可调用对象(通常为函数或类的方法)来建立它,这将建立一个微进程并将其添加到调度器。这是一个快速演示:
注意,微进程将排起队来,并不运行,直到调用stackless.run()。
2.2 调度器(scheler)
调度器控制各个微进程运行的顺序。如果刚刚建立了一组微进程,它们将按照建立的顺序来执行。在现实中,一般会建立一组可以再次被调度的微进程,好让每个都有轮次机会。一个快速演示:
注意:当调用stackless.schele()的时候,当前活动微进程将暂停执行,并将自身重新插入到调度器队列的末尾,好让下一个微进程被执行。一旦在它前面的所有其他微进程都运行过了,它将从上次 停止的地方继续开始运行。这个过程会持续,直到所有的活动微进程都完成了运行过程。这就是使用stackless达到合作式多任务的方式。
2.3 通道(channel)
通道使得微进程之间的信息传递成为可能。它做到了两件事:
能够在微进程之间交换信息。
能够控制运行的流程。
又一个快速演示:
接收的微进程调用channel.receive()的时候,便阻塞住,这意味着该微进程暂停执行,直到有信息从这个通道送过来。除了往这个通道发送信息以外,没有其他任何方式可以让这个微进程恢复运行。
若有其他微进程向这个通道发送了信息,则不管当前的调度到了哪里,这个接收的微进程都立即恢复执行;而发送信息的微进程则被转移到调度列表的末尾,就像调用了stackless.schele()一样。
同样注意,发送信息的时候,若当时没有微进程正在这个通道上接收,也会使当前微进程阻塞:
发送信息的微进程,只有在成功地将数据发送到了另一个微进程之后,才会重新被插入到调度器中。
2.4 总结
以上涵盖了stackless的大部分功能。似乎不多是吧?——我们只使用了少许对象,和大约四五个函数调用,来进行操作。但是,使用这种简单的API作为基本建造单元,我们可以开始做一些真正有趣的事情。
3 协程(coroutine)
3.1 子例程的问题
大多数传统编程语言具有子例程的概念。一个子例程被另一个例程(可能还是其它某个例程的子例程)所调用,或返回一个结果,或不返回结果。从定义上说,一个子例程是从属于其调用者的。
见下例:
有经验的编程者会看到这个程序的问题所在:它导致了堆栈溢出。如果运行这个程序,它将显示一大堆讨厌的跟踪信息,来指出堆栈空间已经耗尽。
3.1.1 堆栈
我仔细考虑了,自己对C语言堆栈的细节究竟了解多少,最终还是决定完全不去讲它。似乎,其他人对其所尝试的描述,以及图表,只有本身已经理解了的人才能看得懂。我将试着给出一个最简单的说明,而对其有更多兴趣的读者可以从网上查找更多信息。
每当一个子例程被调用,都有一个“栈帧”被建立,这是用来保存变量,以及其他子例程局部信息的区域。于是,当你调用 ping() ,则有一个栈帧被建立,来保存这次调用相关的信息。简言之,这个帧记载着 ping 被调用了。当再调用 pong() ,则又建立了一个栈帧,记载着 pong 也被调用了。这些栈帧是串联在一起的,每个子例程调用都是其中的一环。就这样,堆栈中显示: ping 被调用所以 pong 接下来被调用。显然,当 pong() 再调用 ping() ,则使堆栈再扩展。下面是个直观的表示:
帧 堆栈
1 ping 被调用
2 ping 被调用,所以 pong 被调用
3 ping 被调用,所以 pong 被调用,所以 ping 被调用
4 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用
5 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用,所以 ping 被调用
6 ping 被调用,所以 pong 被调用,所以 ping 被调用,所以 pong 被调用,所以 ping 被调用……
现在假设,这个页面的宽度就表示系统为堆栈所分配的全部内存空间,当其顶到页面的边缘的时候,将会发生溢出,系统内存耗尽,即术语“堆栈溢出”。
3.1.2 那么,为什么要使用堆栈?
上例是有意设计的,用来体现堆栈的问题所在。在大多数情况下,当每个子例程返回的时候,其栈帧将被清除掉,就是说堆栈将会自行实现清理过程。这一般 来说是件好事,在C语言中,堆栈就是一个不需要编程者来手动进行内存管理的区域。很幸运,Python程序员也不需要直接来担心内存管理与堆栈。但是由于 Python解释器本身也是用C实现的,那些实现者们可是需要担心这个的。使用堆栈是会使事情方便,除非我们开始调用那种从不返回的函数,如上例中的,那 时候,堆栈的表现就开始和程序员别扭起来,并耗尽可用的内存。
3.2 走进协程
此时,将堆栈弄溢出是有点愚蠢的。 ping() 和 pong() 本不是真正意义的子例程,因为其中哪个也不从属于另一个,它们是“协程”,处于同等的地位,并可以彼此间进行无缝通信。
帧 堆栈
1 ping 被调用
2 pong 被调用
3 ping 被调用
4 pong 被调用
5 ping 被调用
6 pong 被调用
在stackless中,我们使用通道来建立协程。还记得吗,通道所带来的两个好处中的一个,就是能够控制微进程之间运行的流程。使用通道,我们可以在 ping 和 pong 这两个协程之间自由来回,要多少次就多少次,都不会堆栈溢出:
你可以运行这个程序要多久有多久,它都不会崩溃,且如果你检查其内存使用量(使用Windows的任务管理器或Linux的top命令),将会发现 使用量是恒定的。这个程序的协程版本,不管运行一分钟还是一天,使用的内存都是一样的。而如果你检查原先那个递归版本的内存用量,则会发现其迅速增长,直 到崩溃。
3.3 总结
是否还记得,先前我提到过,那个代码的递归版本,有经验的程序员会一眼看出毛病。但老实说,这里面并没有什么“计算机科学”方面的原因在阻碍它的正 常工作,有些让人坚信的东西,其实只是个与实现细节有关的小问题——只因为大多数传统编程语言都使用堆栈。某种意义上说,有经验的程序员都是被洗了脑,从 而相信这是个可以接受的问题。而stackless,则真正察觉了这个问题,并除掉了它。
4 轻量级线程
与当今的操作系统中内建的、和标准Python代码中所支持的普通线程相比,“微线程”要更为轻量级,正如其名称所暗示。它比传统线程占用更少的内存,并且微线程之间的切换,要比传统线程之间的切换更加节省资源。
为了准确说明微线程的效率究竟比传统线程高多少,我们用两者来写同一个程序。
4.1 hackysack模拟
Hackysack是一种游戏,就是一伙脏乎乎的小子围成一个圈,来回踢一个装满了豆粒的沙包,目标是不让这个沙包落地,当传球给别人的时候,可以耍各种把戏。踢沙包只可以用脚。
在我们的简易模拟中,我们假设一旦游戏开始,圈里人数就是恒定的,并且每个人都是如此厉害,以至于如果允许的话,这个游戏可以永远停不下来。
4.2 游戏的传统线程版本