导航:首页 > 编程语言 > pythonnltk分词

pythonnltk分词

发布时间:2025-02-18 05:52:07

Ⅰ 如何用 python 中的 NLTK 对中文进行分析和处理

一、NLTK进行分词
用到的函数:
nltk.sent_tokenize(text) #对文本按照句子进行分割
nltk.word_tokenize(sent) #对句子进行分词

二、NLTK进行词性标注
用到的函数:
nltk.pos_tag(tokens)#tokens是句子分词后的结果,同样是句子级的标注
三、NLTK进行命名实体识别(NER)

用到的函数:
nltk.ne_chunk(tags)#tags是句子词性标注后的结果,同样是句子级
上例中,有两个命名实体,一个是Xi,这个应该是PER,被错误识别为GPE了; 另一个事China,被正确识别为GPE。

Ⅱ 如何利用Python对中文进行分词处理

python做中文分词处理主要有以下几种:结巴分词、NLTK、THULAC
1、fxsjy/jieba
结巴的标语是:做最好的 Python 中文分词组件,或许从现在来看它没做到最好,但是已经做到了使用的人最多。结巴分词网上的学习资料和使用案例比较多,上手相对比较轻松,速度也比较快。
结巴的优点:
支持三种分词模式
支持繁体分词
支持自定义词典
MIT 授权协议

2、THULAC:一个高效的中文词法分析工具包
前两天我在做有关于共享单车的用户反馈分类,使用jieba分词一直太过零散,分类分不好。后来江兄给我推荐了THULAC: 由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包 。THULAC的接口文档很详细,简单易上手。
THULAC分词的优点:
能力强。利用规模最大的人工分词和词性标注中文语料库(约含5800万字)训练而成,模型标注能力强大。
准确率高。该工具包在标准数据集Chinese Treebank(CTB5)上分词的F1值可达97.3%,词性标注的F1值可达到92.9%
速度较快。同时进行分词和词性标注速度为300KB/s,每秒可处理约15万字。只进行分词速度达到1.3MB/s,速度比jieba慢

Python 解决中文编码问题基本可以用以下逻辑:
utf8(输入) ——> unicode(处理) ——> (输出)utf8
Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。
由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

Ⅲ 如何用 Python 中的 NLTK 对中文进行分析和处理

我感觉用nltk 处理中文是完全可用的。其重点在于中文分词和文本表达的形式。
中文和英文主要的不同之处是中文需要分词。因为nltk 的处理粒度一般是词,所以必须要先对文本进行分词然后再用nltk 来处理(不需要用nltk 来做分词,直接用分词包就可以了。严重推荐结巴分词,非常好用)。
中文分词之后,文本就是一个由每个词组成的长数组:[word1, word2, word3…… wordn]。之后就可以使用nltk 里面的各种方法来处理这个文本了。比如用FreqDist 统计文本词频,用bigrams 把文本变成双词组的形式:[(word1, word2), (word2, word3), (word3, word4)……(wordn-1, wordn)]。
再之后就可以用这些来计算文本词语的信息熵、互信息等。
再之后可以用这些来选择机器学习的特征,构建分类器,对文本进行分类(商品评论是由多个独立评论组成的多维数组,网上有很多情感分类的实现例子用的就是nltk 中的商品评论语料库,不过是英文的。但整个思想是可以一致的)。

另外还有一个困扰很多人的Python 中文编码问题。多次失败后我总结出一些经验。
Python 解决中文编码问题基本可以用以下逻辑:
utf8(输入) ——> unicode(处理) ——> (输出)utf8
Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。
由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

阅读全文

与pythonnltk分词相关的资料

热点内容
python组合数据类型 浏览:658
空气压缩机站 浏览:628
什么是企业app 浏览:766
cp1l编程电缆 浏览:131
ev3编程模块 浏览:271
程序员脖子痛如何缓解 浏览:531
java加密aes对称加密算法 浏览:599
格式工厂视频压缩方法 浏览:478
编译后的函数和原始函数如何对应 浏览:623
阐述邮件加密解密过程 浏览:402
敲沙子声控解压 浏览:57
计算机教室用什么服务器 浏览:803
华为畅享9怎么设置短信加密 浏览:287
中国现代编译器 浏览:852
如何得到app专栏 浏览:453
魔兽世界日本服务器什么职业多 浏览:729
表格加密怎么设置只读模式打开 浏览:884
哪个app可以不用花呗分期 浏览:861
SSL是对称加密吗 浏览:46
捷途app钥匙怎么用 浏览:960