1. 编写计算二叉树最大宽度的算法
分析:二叉树是递归定义的,其计算二叉树的高度可以采取递归方式 int Height(btre bt)//求二叉树bt的深度{int hl,hr; if (bt= =NULL) return(0); else { hl=Height(bt->lch); hr=Height(bt->rch); if(hl>hr) return (hl+1); else return(hr+1); } }分析:求二叉树的最大宽度可采用层次遍历的方法,记下各层结点数,每层遍历完毕,若结点数大于原先最大宽度,则修改最大宽度。int Width(BiTree bt)//求二叉树bt的最大宽度{if (bt==null) return (0); //空二叉树宽度为0 else {BiTree Q[]; //Q是队列,元素为二叉树结点指针,容量足够大front=1;rear=1;last=1;//front队头指针,rear队尾指针,last同层最右结点在队列中的位置 temp=0; maxw=0; //temp记局部宽度, maxw记最大宽度 Q[rear]=bt; //根结点入队列 while(front<=last) {p=Q[front++]; temp++; //同层元素数加1 if (p->lchild!=null) Q[++rear]=p->lchild; //左子女入队if (p->rchild!=null) Q[++rear]=p->rchild; //右子女入队 if (front>last) //一层结束, {last=rear; if(temp>maxw) maxw=temp; //last指向下层最右元素, 更新当前最大宽度 temp=0; }//if }//while return (maxw); }//结束width
2. Java数据结构二叉树深度递归调用算法求内部算法过程详解
二叉树
1
2 3
4 5 6 7
这个二叉树的深度是3,树的深度是最大结点所在的层,这里是3.
应该计算所有结点层数,选择最大的那个。
根据上面的二叉树代码,递归过程是:
f(1)=f(2)+1 > f(3) +1 ? f(2) + 1 : f(3) +1
f(2) 跟f(3)计算类似上面,要计算左右结点,然后取大者
所以计算顺序是f(4.left) = 0, f(4.right) = 0
f(4) = f(4.right) + 1 = 1
然后计算f(5.left) = 0,f(5.right) = 0
f(5) = f(5.right) + 1 =1
f(2) = f(5) + 1 =2
f(1.left) 计算完毕,计算f(1.right) f(3) 跟计算f(2)的过程一样。
得到f(3) = f(7) +1 = 2
f(1) = f(3) + 1 =3
if(depleft>depright){
returndepleft+1;
}else{
returndepright+1;
}
只有left大于right的时候采取left +1,相等是取right