导航:首页 > 编程语言 > Java语义相似度

Java语义相似度

发布时间:2025-03-19 16:55:55

㈠ 大数据核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

一、数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC,Netease Data Canal,直译为网易数据运河系统,是网易针对结构化数据库的数据实时迁移、同步和订阅的平台化解决方案。它整合了网易过去在数据传输领域的各种工具和经验,将单机数据库、分布式数据库、OLAP系统以及下游应用通过数据链路串在一起。除了保障高效的数据传输外,NDC的设计遵循了单元化和平台化的设计哲学。

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

当使用上游模块的数据进行计算、统计、分析时,就可以使用消息系统,尤其是分布式消息系统。Kafka使用Scala进行编写,是一种分布式的、基于发布/订阅的消息系统。Kafka的设计理念之一就是同时提供离线处理和实时处理,以及将数据实时备份到另一个数据中心,Kafka可以有许多的生产者和消费者分享多个主题,将消息以topic为单位进行归纳;Kafka发布消息的程序称为procer,也叫生产者,预订topics并消费消息的程序称为consumer,也叫消费者;当Kafka以集群的方式运行时,可以由一个服务或者多个服务组成,每个服务叫做一个broker,运行过程中procer通过网络将消息发送到Kafka集群,集群向消费者提供消息。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Procer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。Kafka可以和Flume一起工作,如果需要将流式数据从Kafka转移到hadoop,可以使用Flume代理agent,将Kafka当做一个来源source,这样可以从Kafka读取数据到Hadoop。

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

二、数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显着减少磁盘上的存储。

三、数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求。

四、数据查询分析

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

五、数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可点击这里免费试用)等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

㈡ 什么是P2P是下载器

P2P普及系列之一

拓扑结构是指分布式系统中各个计算单元之间的物理或逻辑的互联关系,结点之间的拓扑结构一直是确定系统类型的重要依据。目前互联网络中广泛使用集中式、层次式等拓扑结构,Interne本身是世界上最大的非集中式的互联网络,但是九十年代所建立的一些网络应用系统却是完全的集中式的系统、很多Web应用都是运行在集中式的服务器系统上。集中式拓扑结构系统目前面临着过量存储负载、Dos攻击等一些难以解决的问题。

P2P系统一般要构造一个非集中式的拓扑结构,在构造过程中需要解决系统中所包含的大量结点如何命名、组织以及确定结点的加入/离开方式、出错恢复等问题。

根据拓扑结构的关系可以将P2P研究分为4种形式:中心化拓扑(Centralized Topology);全分布式非结构化拓扑(Decentralized Unstructured Topology);全分布式结构化拓扑(Decentralized Structured Topology,也称作DHT网络)和半分布式拓扑(Partially Decentralized Topology)。

其中,中心化拓扑最大的优点是维护简单发现效率高。由于资源的发现依赖中心化的目录系统,发现算法灵活高效并能够实现复杂查询。最大的问题与传统客户机/服务器结构类似,容易造成单点故障,访问的“热点”现象和法律等相关问题,这是第一代P2P网络采用的结构模式,经典案例就是着名的MP3共享软件Napster。

Napster是最早出现的P2P系统之一,并在短期内迅速成长起来。Napster实质上并非是纯粹的P2P系统,它通过一个中央服务器保存所有Napster用户上传的音乐文件索引和存放位置的信息。当某个用户需要某个音乐文件时,首先连接到Napster服务器,在服务器进行检索,并由服务器返回存有该文件的用户信息;再由请求者直接连到文件的所有者传输文件。

Napster首先实现了文件查询与文件传输的分离,有效地节省了中央服务器的带宽消耗,减少了系统的文件传输延时。这种方式最大的隐患在中央服务器上,如果该服务器失效,整个系统都会瘫痪。当用户数量增加到105或者更高时,Napster的系统性能会大大下降。另一个问题在于安全性上,Napster并没有提供有效的安全机制。

在Napster模型中,一群高性能的中央服务器保存着网络中所有活动对等计算机共享资源的目录信息。当需要查询某个文件时,对等机会向一台中央服务器发出文件查询请求。中央服务器进行相应的检索和查询后,会返回符合查询要求的对等机地址信息列表。查询发起对等机接收到应答后,会根据网络流量和延迟等信息进行选择,和合适的对等机建立连接,并开始文件传输。

这种对等网络模型存在很多问题,主要表现为:
(1)中央服务器的瘫痪容易导致整个网络的崩馈,可靠性和安全性较低。
(2)随着网络规模的扩大,对中央索引服务器进行维护和更新的费用将急剧增加,所需成本过高。
(3)中央服务器的存在引起共享资源在版权问题上的纠纷,并因此被攻击为非纯粹意义上的P2P网络模型。对小型网络而言,集中目录式模型在管理和控制方面占一定优势。但鉴于其存在的种种缺陷,该模型并不适合大型网络应用。

P2P普及系列之二

Pastry是微软研究院提出的可扩展的分布式对象定位和路由协议,可用于构建大规模的P2P系统。在Pastry中,每个结点分配一个128位的结点标识符号(nodeID) ,所有的结点标识符形成了一个环形的nodeID空间,范围从0到2128 - 1 ,结点加入系统时通过散列结点IP地址在128位nodeID空间中随机分配。

在MIT,开展了多个与P2P相关的研究项目:Chord,GRID和RON。Chord项目的目标是提供一个适合于P2P环境的分布式资源发现服务,它通过使用DHT技术使得发现指定对象只需要维护O(logN)长度的路由表。

在DHT技术中,网络结点按照一定的方式分配一个唯一结点标识符(Node ID) ,资源对象通过散列运算产生一个唯一的资源标识符(Object ID) ,且该资源将存储在结点ID与之相等或者相近的结点上。需要查找该资源时,采用同样的方法可定位到存储该资源的结点。因此,Chord的主要贡献是提出了一个分布式查找协议,该协议可将指定的关键字(Key) 映射到对应的结点(Node) 。从算法来看,Chord是相容散列算法的变体。MIT GRID和RON项目则提出了在分布式广域网中实施查找资源的系统框架。

T&T ACIRI中心的CAN(Content Addressable Networks) 项目独特之处在于采用多维的标识符空间来实现分布式散列算法。CAN将所有结点映射到一个n维的笛卡尔空间中,并为每个结点尽可能均匀的分配一块区域。CAN采用的散列函数通过对(key, value) 对中的key进行散列运算,得到笛卡尔空间中的一个点,并将(key, value) 对存储在拥有该点所在区域的结点内。CAN采用的路由算法相当直接和简单,知道目标点的坐标后,就将请求传给当前结点四邻中坐标最接近目标点的结点。CAN是一个具有良好可扩展性的系统,给定N个结点,系统维数为d,则路由路径长度为O(n1/d) ,每结点维护的路由表信息和网络规模无关为O(d) 。

DHT类结构最大的问题是DHT的维护机制较为复杂,尤其是结点频繁加入退出造成的网络波动(Churn)会极大增加DHT的维护代价。DHT所面临的另外一个问题是DHT仅支持精确关键词匹配查询,无法支持内容/语义等复杂查询。

半分布式结构(有的文献称作 Hybrid Structure)吸取了中心化结构和全分布式非结构化拓扑的优点,选择性能较高(处理、存储、带宽等方面性能)的结点作为超级点(英文文献中多称作:SuperNodes, Hubs),在各个超级点上存储了系统中其他部分结点的信息,发现算法仅在超级点之间转发,超级点再将查询请求转发给适当的叶子结点。半分布式结构也是一个层次式结构,超级点之间构成一个高速转发层,超级点和所负责的普通结点构成若干层次。最典型的案例就是KaZaa。

KaZaa是现在全世界流行的几款p2p软件之一。根据CA公司统计,全球KaZaa的下载量超过2.5亿次。使用KaZaa软件进行文件传输消耗了互联网40%的带宽。之所以它如此的成功,是因为它结合了Napster和Gnutella共同的优点。从结构 上来说,它使用了Gnutella的全分布式的结构,这样可以是系统更好的扩展,因为它无需中央索引服务器存储文件名,它是自动的把性能好的机器成为SuperNode,它存储着离它最近的叶子节点的文件信息,这些SuperNode,再连通起来形成一个Overlay Network. 由于SuperNode的索引功能,使搜索效率大大提高。

P2P普及系列之三

全分布非结构化网络在重叠网络(overlay)采用了随机图的组织方式,结点度数服从"Power-law"[a][b]规律,从而能够较快发现目的结点,面对网络的动态变化体现了较好的容错能力,因此具有较好的可用性。同时可以支持复杂查询,如带有规则表达式的多关键词查询,模糊查询等,最典型的案例是Gnutella。

Gnutella是一个P2P文件共享系统,它和Napster最大的区别在于Gnutella是纯粹的P2P系统,没有索引服务器,它采用了基于完全随机图的洪泛(Flooding)发现和随机转发(Random Walker)机制。为了控制搜索消息的传输,通过TTL (Time To Live)的减值来实现。具体协议参照〔Gnutella协议中文版〕

在Gnutella分布式对等网络模型N中,每一个联网计算机在功能上都是对等的,既是客户机同时又是服务器,所以被称为对等机(Servent,Server+Client的组合)。

随着联网节点的不断增多,网络规模不断扩大,通过这种洪泛方式定位对等点的方法将造成网络流量急剧增加,从而导致网络中部分低带宽节点因网络资源过载而失效。所以在初期的Gnutella网络中,存在比较严重的分区,断链现象。也就是说,一个查询访问只能在网络的很小一部分进行,因此网络的可扩展性不好。所以,解决Gnutella网络的可扩展性对该网络的进一步发展至关重要。

由于没有确定拓扑结构的支持,非结构化网络无法保证资源发现的效率。即使需要查找的目的结点存在发现也有可能失败。由于采用TTL(Time-to-Live)、洪泛(Flooding)、随机漫步或有选择转发算法,因此直径不可控,可扩展性较差。

因此发现的准确性和可扩展性是非结构化网络面临的两个重要问题。目前对此类结构的研究主要集中于改进发现算法和复制策略以提高发现的准确率和性能。

全分布非结构化网络在重叠网络(overlay)采用了随机图的组织方式,结点度数服从"Power-law"[a][b]规律,从而能够较快发现目的结点,面对网络的动态变化体现了较好的容错能力,因此具有较好的可用性。同时可以支持复杂查询,如带有规则表达式的多关键词查询,模糊查询等,最典型的案例是Gnutella。

Gnutella是一个P2P文件共享系统,它和Napster最大的区别在于Gnutella是纯粹的P2P系统,没有索引服务器,它采用了基于完全随机图的洪泛(Flooding)发现和随机转发(Random Walker)机制。为了控制搜索消息的传输,通过TTL (Time To Live)的减值来实现。具体协议参照〔Gnutella协议中文版〕

在Gnutella分布式对等网络模型N中,每一个联网计算机在功能上都是对等的,既是客户机同时又是服务器,所以被称为对等机(Servent,Server+Client的组合)。

随着联网节点的不断增多,网络规模不断扩大,通过这种洪泛方式定位对等点的方法将造成网络流量急剧增加,从而导致网络中部分低带宽节点因网络资源过载而失效。所以在初期的Gnutella网络中,存在比较严重的分区,断链现象。也就是说,一个查询访问只能在网络的很小一部分进行,因此网络的可扩展性不好。所以,解决Gnutella网络的可扩展性对该网络的进一步发展至关重要。

由于没有确定拓扑结构的支持,非结构化网络无法保证资源发现的效率。即使需要查找的目的结点存在发现也有可能失败。由于采用TTL(Time-to-Live)、洪泛(Flooding)、随机漫步或有选择转发算法,因此直径不可控,可扩展性较差。

因此发现的准确性和可扩展性是非结构化网络面临的两个重要问题。目前对此类结构的研究主要集中于改进发现算法和复制策略以提高发现的准确率和性能。

P2P普及系列之四

半分布式结构的优点是性能、可扩展性较好,较容易管理,但对超级点依赖性大,易于受到攻击,容错性也受到影响。下表比较了4种结构的综合性能,比较结果如表1-1所示。

比较标准/拓扑结构 中心化拓扑 全分布式非结构化拓扑 全分布式结构化拓扑 半分布式拓扑
可扩展性 差 差 好 中
可靠性 差 好 好 中
可维护性 最好 最好 好 中
发现算法效率 最高 中 高 中
复杂查询 支持 支持 不支持 支持

表1:4种结构的性能比较

P2P普及系列之五

国外开展P2P研究的学术团体主要包括P2P工作组(P2PWG) 、全球网格论坛(Global Grid Forum ,GGF) 。P2P工作组成立的主要目的是希望加速P2P计算基础设施的建立和相应的标准化工作。P2PWG成立之后,对P2P计算中的术语进行了统一,也形成相关的草案,但是在标准化工作方面工作进展缓慢。目前P2PWG已经和GGF合并,由该论坛管理P2P计算相关的工作。GGF负责网格计算和P2P计算等相关的标准化工作。

从国外公司对P2P计算的支持力度来看,Microsoft公司、Sun公司和Intel公司投入较大。Microsoft公司成立了Pastry项目组,主要负责P2P计算技术的研究和开发工作。目前Microsoft公司已经发布了基于Pastry的软件包SimPastry/ VisPastry。Rice大学也在Pastry的基础之上发布了FreePastry软件包。

在2000年8月,Intel公司宣布成立P2P工作组,正式开展P2P的研究。工作组成立以后,积极与应用开发商合作,开发P2P应用平台。2002年Intel发布了. Net基础架构之上的Accelerator Kit (P2P加速工具包) 和P2P安全API软件包,从而使得微软. NET开发人员能够迅速地建立P2P安全Web应用程序。

Sun公司以Java技术为背景,开展了JXTA项目。JXTA是基于Java的开源P2P平台,任何个人和组织均可以加入该项目。因此,该项目不仅吸引了大批P2P研究人员和开发人员,而且已经发布了基于JXTA的即时聊天软件包。JXTA定义了一组核心业务:认证、资源发现和管理。在安全方面,JXTA加入了加密软件包,允许使用该加密包进行数据加密,从而保证消息的隐私、可认证性和完整性。在JXTA核心之上,还定义了包括内容管理、信息搜索以及服务管理在内的各种其它可选JXTA服务。在核心服务和可选服务基础上,用户可以开发各种JXTA平台上的P2P应用。

P2P实际的应用主要体现在以下几个方面:

P2P分布式存储
P2P分布式存储系统是一个用于对等网络的数据存储系统,它可以提供高效率的、鲁棒的和负载平衡的文件存取功能。这些研究包括:OceanStore,Farsite等。其中,基于超级点结构的半分布式P2P应用如Kazza、Edonkey、Morpheus、Bittorrent等也是属于分布式存储的范畴,并且用户数量急剧增加。

计算能力的共享
加入对等网络的结点除了可以共享存储能力之外,还可以共享CPU处理能力。目前已经有了一些基于对等网络的计算能力共享系统。比如SETI@home。目前SETI@home采用的仍然是类似于Napster的集中式目录策略。Xenoservers向真正的对等应用又迈进了一步。这种计算能力共享系统可以用于进行基因数据库检索和密码破解等需要大规模计算能力的应用。

P2P应用层组播
应用层组播,就是在应用层实现组播功能而不需要网络层的支持。这样就可以避免出现由于网络层迟迟不能部署对组播的支持而使组播应用难以进行的情况。应用层组播需要在参加的应用结点之间实现一个可扩展的,支持容错能力的重叠网络,而基于DHT的发现机制正好为应用层组播的实现提供了良好的基础平台。
Internet间接访问基础结构(Internet Indirection Infrastructure)。

为了使Internet更好地支持组播、单播和移动等特性,Internet间接访问基础结构提出了基于汇聚点的通信抽象。在这一结构中,并不把分组直接发向目的结点,而是给每个分组分配一个标识符,而目的结点则根据标识符接收相应的分组。标识符实际上表示的是信息的汇聚点。目的结点把自己想接收的分组的标识符预先通过一个触发器告诉汇聚点,当汇聚点收到分组时,将会根据触发器把分组转发该相应的目的结点。Internet间接访问基础结构实际上在Internet上构成了一个重叠网络,它需要对等网络的路由系统对它提供相应的支持。

P2P技术从出现到各个领域的应用展开,仅用了几年的时间。从而证明了P2P技术具有非常广阔的应用前景。

P2P普及系列之六

随着P2P应用的蓬勃发展,作为P2P应用中核心问题的发现技术除了遵循技术本身的逻辑以外,也受到某些技术的发展趋势、需求趋势的深刻影响。

如上所述,DHT发现技术完全建立在确定性拓扑结构的基础上,从而表现出对网络中路由的指导性和网络中结点与数据管理的较强控制力。但是,对确定性结构的认识又限制了发现算法效率的提升。研究分析了目前基于DHT的发现算法,发现衡量发现算法的两个重要参数度数(表示邻居关系数、路由表的容量)和链路长度(发现算法的平均路径长度)之间存在渐进曲线的关系。

研究者采用图论中度数(Degree)和直径(Diameter)两个参数研究DHT发现算法,发现这些DHT发现算法在度数和直径之间存在渐进曲线关系,如下图所示。在N个结点网络中,图中直观显示出当度数为N时,发现算法的直径为O(1);当每个结点仅维护一个邻居时,发现算法的直径为O(N)。这是度数和直径关系的2种极端情况。同时,研究以图论的理论分析了O(d)的度和O(d)的直径的算法是不可能的。

从渐进曲线关系可以看出,如果想获得更短的路径长度,必然导致度数的增加;而网络实际连接状态的变化造成大度数邻居关系的维护复杂程度增加。另外,研究者证明O(logN)甚至O(logN/loglogN)的平均路径长度也不能满足状态变化剧烈的网络应用的需求。新的发现算法受到这种折衷关系制约的根本原因在于DHT对网络拓扑结构的确定性认识。

非结构化P2P系统中发现技术一直采用洪泛转发的方式,与DHT的启发式发现算法相比,可靠性差,对网络资源的消耗较大。最新的研究从提高发现算法的可靠性和寻找随机图中的最短路径两个方面展开。也就是对重叠网络的重新认识。其中,small world特征和幂规律证明实际网络的拓扑结构既不是非结构化系统所认识的一个完全随机图,也不是DHT发现算法采用的确定性拓扑结构。

实际网络体现的幂规律分布的含义可以简单解释为在网络中有少数结点有较高的“度”,多数结点的“度”较低。度较高的结点同其他结点的联系比较多,通过它找到待查信息的概率较高。

Small-world[a][b]模型的特性:网络拓扑具有高聚集度和短链的特性。在符合small world特性的网络模型中,可以根据结点的聚集度将结点划分为若干簇(Cluster),在每个簇中至少存在一个度最高的结点为中心结点。大量研究证明了以Gnutella为代表的P2P网络符合small world特征,也就是网络中存在大量高连通结点,部分结点之间存在“短链”现象。

因此,P2P发现算法中如何缩短路径长度的问题变成了如何找到这些“短链”的问题。尤其是在DHT发现算法中,如何产生和找到“短链”是发现算法设计的一个新的思路。small world特征的引入会对P2P发现算法产生重大影响。

P2P普及系列之七

有DHT算法由于采用分布式散列函数,所以只适合于准确的查找,如果要支持目前Web上搜索引擎具有的多关键字查找的功能,还要引入新的方法。主要的原因在于DHT的工作方式。

基于DHT的P2P系统采用相容散列函数根据精确关键词进行对象的定位与发现。散列函数总是试图保证生成的散列值均匀随机分布,结果两个内容相似度很高但不完全相同的对象被生成了完全不同的散列值,存放到了完全随机的两个结点上。因此,DHT可以提供精确匹配查询,但是支持语义是非常困难的。

目前在DHT基础上开展带有语义的资源管理技术的研究还非常少。由于DHT的精确关键词映射的特性决定了无法和信息检索等领域的研究成果结合,阻碍了基于DHT的P2P系统的大规模应用。

P2P发现技术中最重要的研究成果应该是基于small world理论的非结构化发现算法和基于DHT的结构化发现算法。尤其是DHT及其发现技术为资源的组织与查找提供了一种新的方法。

随着P2P系统实际应用的发展,物理网络中影响路由的一些因素开始影响P2P发现算法的效率。一方面,实际网络中结点之间体现出较大的差异,即异质性。由于客户机/服务器模式在Internet和分布式领域十几年的应用和大量种类的电子设备的普及,如手提电脑、移动电话或PDA。这些设备在计算能力、存储空间和电池容量上差别很大。另外,实际网络被路由器和交换机分割成不同的自治区域,体现出严密的层次性。

另一方面,网络波动的程度严重影响发现算法的效率。网络波动(Churn、fluctuation of network)包括结点的加入、退出、失败、迁移、并发加入过程、网络分割等。DHT的发现算法如Chord、CAN、Koorde等都是考虑网络波动的最差情况下的设计与实现。由于每个结点的度数尽量保持最小,这样需要响应的成员关系变化的维护可以比较小,从而可以快速恢复网络波动造成的影响。但是每个结点仅有少量路由状态的代价是发现算法的高延时,因为每一次查找需要联系多个结点,在稳定的网络中这种思路是不必要的。

同时,作为一种资源组织与发现技术必然要支持复杂的查询,如关键词、内容查询等。尽管信息检索和数据挖掘领域提供了大量成熟的语义查询技术,由于DHT精确关键词映射的特性阻碍了DHT在复杂查询方面的应用。

P2P普及系列之八

Internet作为当今人类社会信息化的标志,其规模正以指数速度高速增长.如今Internet的“面貌”已与其原型ARPANET大相径庭,依其高度的复杂性,可以将其看作一个由计算机构成的“生态系统”.虽然Internet是人类亲手建造的,但却没有人能说出这个庞然大物看上去到底是个什么样子,运作得如何.Internet拓扑建模研究就是探求在这个看似混乱的网络之中蕴含着哪些还不为我们所知的规律.发现Internet拓扑的内在机制是认识Internet的必然过程,是在更高层次上开发利用Internet的基础.然而,Internet与生俱来的异构性动态性发展的非集中性以及如今庞大的规模都给拓扑建模带来巨大挑战.Internet拓扑建模至今仍然是一个开放性问题,在计算机网络研究中占有重要地位.

Internet拓扑作为Internet这个自组织系统的“骨骼”,与流量协议共同构成模拟Internet的3个组成部分,即在拓扑网络中节点间执行协议,形成流量.Internet拓扑模型是建立Internet系统模型的基础,由此而体现的拓扑建模意义也可以说就是Internet建模的意义,即作为一种工具,人们用其来对Internet进行分析预报决策或控制.Internet模型中的拓扑部分刻画的是Internet在宏观上的特征,反映一种总体趋势,所以其应用也都是在大尺度上展开的.对Internet拓扑模型的需求主要来自以下几个方面1) 许多新应用或实验不适合直接应用于Internet,其中一些具有危害性,如蠕虫病毒在大规模网络上的传播模拟;(2) 对于一些依赖于网络拓扑的协议(如多播协议),在其研发阶段,当前Internet拓扑只能提供一份测试样本,无法对协议进行全面评估,需要提供多个模拟拓扑环境来进行实验;(3) 从国家安全角度考虑,需要在线控制网络行为,如美国国防高级研究计划局(DARPA)的NMS(network modeling and simulation)项目。

随机网络是由N个顶点构成的图中,可以存在条边,我们从中随机连接M条边所构成的网络。还有一种生成随机网络的方法是,给一个概率p,对于中任何一个可能连接,我们都尝试一遍以概率p的连接。如果我们选择M = p,这两种随机网络模型就可以联系起来。对于如此简单的随机网络模型,其几何性质的研究却不是同样的简单。随机网络几何性质的研究是由Paul,Alfréd Rényi和Béla Bollobás在五十年代到六十年代之间完成的。随机网络在Internet的拓扑中占有很重要的位置。

随机网络参数
描述随机网络有一些重要的参数。一个节点所拥有的度是该节点与其他节点相关联的边数,度是描述网络局部特性的基本参数。网络中并不是所有节点都具有相同的度,系统中节点度的分布情况,可以用分布函数描述,度分布函数反映了网络系统的宏观统计特征。理论上利用度分布可以计算出其他表征全局特性参数的量化数值。

聚集系数是描述与第三个节点连接的一对节点被连接的概率。从连接节点的边的意义上,若为第i个节点的度,在由k.个近邻节点构成的子网中,实际存在的边数E(i)与全部k.个节点完全连接时的总边数充的比值定义为节点i的聚集系数。

㈢ 英语翻译软件的原理

机器翻译基本工作原理和基本分类

机器翻译(Machine Translation,MT)是建立在多学科基础上的综合学科,现代理论语言学的发展,计算机科学的进步,信息学和概率统计学的应用,对机器翻译的发展和演变产生了重要影响。机器翻译的基本思想是利用计算机对自然语言进行翻译,而各种机器翻译系统采用的技术和理念不尽相同;面对各种各样的机器翻译系统,文献上有各种分类方式。本文根据所应用的基本工作原理对机器翻译系统分类作一综述。
1. 基本类型的机器翻译系统:现有的机器翻译系统按照其基本工作原理,可以分为基于规则的(Rule-Based)机器翻译,基于实例的(Example-Based)机器翻译和统计型的(Statistical)机器翻译这三种基本类型。
1.1. 基于规则的机器翻译系统(Rule-Based Machine Translation, RBMT):其基本工作原理基于一个假设,即语言无限的句子可以由有限的规则推导出来。基于这个假设的机器翻译方法又可以分为三类:直接翻译法(Direct Translation),中间语言法(Interlingual Approach),和转换法(Transfer Approach)。它们都需要用到大规模的双语词典,需要用到源语言推导规则,语言转换规则和目标语言生成规则;其不同点在于对语言进行的分析深度不同。如直译法几乎不需要进行语言分析,中间语言法和转换法需要对源语言和目标语言进行某种程度的语言分析。
1.1.1直接翻译法(Direct Translation):这种翻译方法直接对源文字中的字词进行逐个翻译,译后文字顺序按照原文顺序进行排列。这是基于规则的机器翻译的最早的工作方法。这种译法简单、直观,其弊端也是明显的:由这种方法得到的翻译结果质量很不令人满意。人们已经逐渐不再使用这种直接翻译法。
1.1.2中间语言法(Interlingual Approach):这种翻译方法对源语言文字进行透彻的语言分析,将其转化为一种中间语言表达形式,进而由这种中间语言(Interlingua)进一步生成和输出符合目标语言语法规则的文字。这种中间语言是一种非自然语言,即不是任何国家地区人们使用的语言;而且它是一种没有歧义的表达方式。此外,中间语言不是唯一的,不同的系统采用不同的中间语言。任意一种语言经由中间语言译为其它任意一种语言,理论上这种中间语言法是最有效率的一种翻译方式。假定世界上总共有n种自然语言,使用中间语言法,只需2n个模块就可以解决所有自然语言之间的互译问题。不使用中间语言,这些语言间的互译则需要n(n-1)个模块。当n大于3时,2n小于n(n-1)。我们知道,世界上的自然语言种类远大于3,因此2n个模块的数量远小于n(n-1)个模块的数量。
1.1.3 转换法(Transfer Approach):这种翻译方法先对源语言文字进行一定程度的语言分析,去除语法的因素,生成源语言的中间表达方式,然后经由转换,生成目标语言的中间表达方式,再由目标语言的中间表达方式生成和输出符合目标语言语法规则的文字。目前来说,转换法的语言分析和实现方法在三种方法中最为复杂,得到的翻译质量在三种方法中也是最好的,是目前商业上最常使用的翻译方法,在商业上最为成功。
在许多基于规则的机器翻译系统中,由语言学家辅助编写一系列关于源语言和目标语言的语法规则,以及将源语言数据转换为目标语言数据的转换规则。然而使用全人工来制作这些规则非常昂贵、费时,而且易于出错。一个解决方法便是将以往的历史翻译结果作为资源库,其中的源语言文字和它对应的目标语言译文作为例子,从中尝试提取出恰当的规则。方法之一是对源文字和目标语言译文作人工标记以示关联。Sato言和Nagao[1]研发出一个系统,用“平面依赖关系树”来表示源语言文字和目标语言文字。这种关系树型数据结构是计算机高效识别的一种形式。通常用两个层次代表源语言和目标语言之间的关联:第一层次依赖于文字的表面形式(如字、词顺序),用于源语言的分析和目标语言的生成;第二层次依赖于字词间的语义关联,用于从源语言向目标语言的转换。这种机器翻译系统在基于规则的机器翻译基础上,利用了实例库的优势。
随着大量历史翻译结果的积累,出现了基于实例的机器翻译系统,人们将这些已经完成的翻译结果作为资源库,利用到机器翻译中来。
1.2. 基于实例的机器翻译(Example-Based Machine Translation,EBMT):其基本工作原理是基于类比(Analogy)的原则,从实例库中匹配出与源文字片段最相似的文字片段,取出实例文字片段对应的目标语言翻译结果,进行适当的改造,最终得出完整的翻译结果。基于实例的机器翻译其核心思想最早由MakonNagao 提出,他提出:人们在翻译简单句子时并不作深层语言分析,而是翻译。首先把源句子分解成若干片段,然后将这些片段译为目标语言,每个片段的翻译都是通过与例句做匹配以类比的原则得到的,最后将这些译后句子组合成一个长句子。
1.2.1. 实例库的构成:实例库也称为语料库(Corpus),由已经完成的翻译结果构成。这些现成的翻译结果也称为语料,包括人工翻译的结果和经过人工编辑的机器翻译结果。语料库由双语对构成,包括源语言文字片段和目标语言译文文字片段两部分。这些翻译结果要先经过拆分和对齐处理,才可以成为语料库中的可用语料。因此语料库也称为平行双语语料库(Parallel的 Corpus)。拆分和对齐目前有多种形式,如句子水平的对齐和短语水平的对齐。对齐的文字片段大小的选择,会直接影响匹配的效率和翻译结果。
1.2.2. 语料拆分的碎片化问题:Nirenburg等(1993)指出,在基于实例的机器翻译系统(EBMT) 中,实例语料存在一个文字片段长度和相似度之间的一个矛盾。文字片段越长,越不易得到一个相似度高的匹配;文字片段越短,越可能得到一个大致匹配,但是得到低质量翻译结果的风险也越大。比如由段落划分边界产生的重叠问题以及不恰当的划分导致的翻译质量下降。直观上似乎是选择以句子为单位划分得到的语料对比较好,有诸多优势如:句子的边界划分清楚,一些简单句子的结构清晰。然而在实际应用中,以句子为单位并不是最恰当的方式。实践证明匹配和重组过程需要使用更加短小的片段。(当然,这些研究结果是以欧美语系语言之间的翻译研究结果为基础的。)
1.2.3. 实例库定制:实例语料的的范围和质量影响着基于实例的机器翻译系统(EBMT)的翻译质量水平。在某特定领域获取高质量语料可以大大提高机器翻译在此领域的翻译质量,称为语料(实例)库的定制。
1.3. 统计型机器翻译系统(Statistical MT):IBM公司的Brown在1990年首先将统计模型用于法-英机器翻译。其基本思想是:把机器翻译问题看成是一个噪声信道问题,然后用信道模型来进行解码。翻译过程被看作是一个解码的过程,进而变成寻求最优翻译结果的过程。基于这种思想的机器翻译重点是定义最合适的语言概率模型和翻译概率模型,然后对语言模型和翻译模型的概率参数进行估计。语言模型的参数估计需要大量的单语语料,翻译模型的参数估计需要大量平行双语语料。统计机器翻译的质量很大程度上取决于语言模型和翻译模型的性能,此外,要找到最优的译文,还需要有好的搜索算法。简单说,统计机器翻译首先建立统计模型,然后使用实例库中的实例对统计模型进行训练,得到需要的语言模型和翻译模型用于翻译。
统计型机器翻译,除了基于噪声信道理论的系统以外,还有基于最大熵方法的系统。博格(A.L.Berger)在1996年 提出自然语言处理中“最大熵方法”(Maximum Entropy Approach)。德国人奥赫 (Franz Joseph Och)等发现, 把IBM公司的统计机器翻译基本方程式中的翻译模型转变为反向翻译模型,总体的翻译正确率并没有降低,由此,他们提出基于最大熵方法的机器翻译模型。
统计型机器翻译取得了一定的成绩,然而纯统计设计却不能解决所有困难。统计型的方法不考虑语言的语义、语法因素,单纯用数学的方法来处理语言问题,有着巨大的局限性。于是人们开始探索基于统计方法和其它翻译方法的联合应用。如统计的和基于实例的机器翻译系统,统计的和基于规则的机器翻译系统,等等。
2. 综合类型的机器翻译系统:
以上三个基本机器翻译系统各有优势和长处,同时又不可避免的具有某种缺陷和局限性。如基于规则的机器翻译系统(RBMT)可以准确的描述语言学特征和规律,然而制定适用和完备的语言规则却不是一件容易的事;基于实例的机器翻译系统(EBMT)可以充分利用已有的翻译结果,但是实例库的维护需要大量的人工和费用;统计型的机器翻译(Statistical以MT)可以缓解知识获取的瓶颈问题,但是纯数学的方法难于完全解决语言中的复杂问题。为进一步提高机器翻译系统的翻译水平,人们综合以上几个基本类型的优势,又发明了混合型机器翻译系统(Hybrid器MT),多引擎机器翻译系统(Multi-Engine MT)和提出了基于知识的机器翻译系统(Knowledge-Based MT)的理论。
2.1 混合型机器翻译系统(Hybrid MT):翻译过程使用两种或以上机器翻译原理。比如:基于规则的机器翻译方法的核心是构造完备的、适应性较强的规则系统。如何得到完备和适应性强的规则系统成为研究焦点。使用传统的方法,语法规则库的建立需要大量的人力、物力,大量的语言语法规则之间往往存在着不可避免的冲突,规则的完备性和适应性不能得到保证。随着人们翻译工作的进行,生成大量已完成的翻译结果,形成大量语料。人们想到了使用统计方法从现有语料中自动提取我们需要的语言语法信息。从实例中抽取语言转换规则,将基于实例的机器翻译作为研究技术来建立语言规则基础,而不是单纯用来进行类比翻译。通过一个归纳的过程,从大量例句中提出抽象的规则 。这样传统的基于规则的机器翻译方法发展成为以规则为基础,语料库为辅助的机器翻译方法。这种翻译模型可以称之为混合型机器翻译系统(Hybrid MT)。
2.2 多引擎机器翻译系统(Multi-Engine MT):这种机器翻译系统的基本思想是几架机器翻译引擎同时进行并行翻译,并行翻译的这几架翻译引擎分别基于不同的工作原理,给出多个翻译结果,然后通过某种机制或算法筛选并生成最优翻译结果进行输出。多引擎机器翻译系统的一种工作方式如:接收到源文字后,先将文字转化为若干文字片段,由多个机器翻译引擎进行并行翻译,型各个文字片段均得到多个翻译结果, 通过某种机制选择最优的翻译片段组成最优组合,最后输出最优的翻译结果。或者是接收到源文字后,由多个机器翻译引擎进行并行翻译,得到多个翻译结果,然后对各个翻译结果进行字词的比较,通过某种假设检验和算法,选择适当的字词翻译组成最优翻译结果输出。
2.3. 基于知识的机器翻译系统(Knowledge-Based MT):在机器翻译研究中,人们越来越发现在翻译过程中正确的理解、领会源语言的重要性。语言有着其复杂性。其中语言的模糊性是各种机器翻译系统所面对的最顽固的难题。语言的模糊性指语言文字同一表层结构对应着两种或两种以上的深层结构,简单说就是一种形式对应着两种或两种以上的解释,必须通过上下文内容的提示和综合知识背景、常识才可能做出正确的诠释。受人工智能,知识工程的发展影响,人们开始强调对源语言更为彻底的理解,提出不仅需要进行深层语言分析,还需要进行世界知识的积累和处理,建立知识库,以助于理解语言。通过对世界知识的了解,解决机器翻译中遇到的语言模糊问题。为了从根本上彻底的解决机器翻译所面对的语言的模糊性问题,人们提出了基于知识的机器翻译系统。
2.3.1 基于语义网的机器翻译(Semantic Web based Machine Translation, SWMT):是基于知识的机器翻译系统的一种实现方式。语义网(Semantic Web),指通过某种技术,将现有网络上的知识内容转化为机器可以辨识的内容,成为机器翻译的“世界知识库”。这些理论基于Tim Berners-Lee提出的观点“知识一旦经定义和形式化后,便可以通过任意方式访问”。万维网最初的设计是希望它简单,去中心化并且尽可能的易于互动。网络的发展证明它是一个巨大的成功。然而,网络上面的信息都是面向人类大脑的。为了让计算机也能够接受和利用这些信息资源,在新的世纪一种扩展和补充性质的技术出现了,分称为W3C,Semantic Web3 (三维语义网)。三维语义网络的基础技术是数据格式的“资源描述构架”( ‘Resource Description Framework’,RDF), 它定义了一种结构,用一种自然的方式来描述计算机处理的巨大量的数据[8]。目前人们已经 在尝试将现有的机器翻译系统整合入语义网,以充分利用世界知识/专家知识, 提高机器翻译质量。
3.语音翻译(Speech Translation):语音翻译是与文字翻译相对应的一种机器翻译分类,与前面的分类有着不同。但是有着广泛的应用,如日常交谈、电话通话、会议讲话等对语音交流内容的自动翻译,在实际应用中非常重要。语音翻译在翻译之前增加了一个语言识别(SpeechB Recognition)过程,形成正确的文字内容输入,并且在翻译过程完成后增加了一个语音合成(Speech Synthesis)过程,
形成一个正确的语音内容输出。其中语音识别技术和语音合成技术都有着专门研究,这里不再赘述。

作者姓名:洪洁
工作单位:传神语联网网络科技股份有限公司 多语工程中心
作者姓名:洪雷
工作单位:中国科学院大学 外语系

阅读全文

与Java语义相似度相关的资料

热点内容
哪个读书app可以真实领到钱 浏览:887
javaclasspath环境变量 浏览:843
android内置sd外置sd卡 浏览:630
程序员在东南亚被毒打 浏览:284
php内存操作 浏览:6
1加手机号码放哪个文件夹 浏览:728
大兵程序员 浏览:785
青桔app福利中心在哪里 浏览:170
算法安全是智能化战争的博弈焦点 浏览:497
编译器用vs多少 浏览:316
pc单机游戏压缩包下载 浏览:570
服务器锁定什么意思 浏览:731
吐司解压神器 浏览:70
程序员的电脑一般用什么 浏览:934
如何从服务器中查询表是否存在 浏览:323
android首页布局源码 浏览:46
虎牙主播是怎么安卓投屏的 浏览:782
redmonk编程语言排行榜 浏览:110
android嵌入html5 浏览:676
云服务器能永久使用吗 浏览:904