导航:首页 > 编程语言 > javagetopt

javagetopt

发布时间:2025-04-11 13:23:37

Ⅰ c语言和python哪个好入门

从开始看Python到现在也有半个多月了,前后看了Python核心编程和Dive into
Python两本书。话说半个月看两本,是个人都知道有多囫囵吞枣,这也是因为我暂时没有需求拿这个做大型开发,主要是平时的小程序test用一用。所以

我的策略是,整体浏览,用到时候现查。话说这核心编程第一版太古老了,老在讲2.2之前的东西,我看的翻译电子版,翻译得也不好,很晦涩。看完这个后还有
点云里雾里,看网上人家说DIP好,啄木鸟还有免费电子文档,就找来看这个。怎么说呢,讲的比核心编程好,但不适合第一次看的初学者。我之所以觉得讲得
好,是因为看核心编程,有些概念还有些模糊,看了这本书就明白不少了。要是初学者上来就看这本,保证不好理解。

下面就是在学习的过程中,在翻阅资料的过程中,总结的一些C和python比较明显的不同之处,有大方向的,也有细节的。肯定没有总结完,比如动态

函数,lambda这些,我都懒得往上写了。实际上,作为两种完全不同的语言,下面这些差异只是冰山一角而已。权当抛砖引玉吧,至少应该对和我有相同研究

兴趣,正在考虑是否学习另一门语言的朋友有点帮助。此文也算是DIP的学习笔记吧。顺带说一句,要是有朋友了解,可以帮忙推荐一下实战性强的Python
教材,语言这东西,不多练手,光比划,是不可能学好的。

学习目的

我的以后的研究方向是嵌入式,显然,C语言是我的主要语言。我不是一个语言爱好者,我以前觉得,对于做研究而不是应用的人来说,了解多门语言,不如

精通一门语言。之所以去看python,主要还是因为python更有利于快速开发一些程序,也是因为现在认识到,研究和应用是不能分离的。个人以为,要
想在计算机工程的竞争中立足,必须懂C语言。因为真正要做高性能编程,
不可能将机器的体系架构抛到脑后让Python虚拟机(或java虚拟机等)帮你搞定所有底层。越来越多的CPU
core,越来越恐怖的内存性能瓶颈,对于上层开发人员来说,无所谓,但是对高性能程序开发人员来说,这些是无法透明的。很多应用,还是自己掌控比较有
效。这些场合中,汇编和C还是不可替代的。但是,光知道C是不够的,掌握一门面向对象语言,相对更高层的语言,不仅对以后的个人发展有利,也会对自己的技
术认识产生帮助。

如果要问对我来说谁更重要,我觉得还是C更重要。C的学习曲线更陡,貌似简单,实际上到处都是陷阱,看上去比较简单低效的程序,也不是学1,2个月

就能搞定的。谈到优化的深层次和难度嘛,需要的功底是按年算的。但是一旦你C语言的基础打好了,对计算机的理解,对其他语言的理解都是大有裨益的。比如,

如果你有C基础,可以说,学过1天python,就能写的出来一些不短的程序。后面的优化也不是什么大不了的算法,都是非常基本的语句换来换去。当然这里
不是说 Python不好,实际上,上层应用,Python比C方便的不是一个层次。

很多人觉得,既然懂C了,那么进一步掌握C++应该是水到渠成,但C++不是C的超集,而我又不喜欢C++的繁琐和巨大,所以才决定看一看Python。我很喜欢Python的优雅与快捷。

语言类型

和C不一样,Python是一种动态类型语言,又是强类型语言。这个分类怎么理解呢?大概是可以按照下列说明来分类的:

静态类型语言

一种在编译期间就确定数据类型的语言。大多数静态类型语言是通过要求在使用任一变量之前声明其数据类型来保证这一点的。Java和 C 是静态类型语言。

动态类型语言

一种在运行期间才去确定数据类型的语言,与静态类型相反。Python 是动态类型的,因为它们确定一个变量的类型是在您第一次给它赋值的时候。

强类型语言

一种总是强制类型定义的语言。Java 和 Python 是强制类型定义的。您有一个整数,如果不明确地进行转换 ,不能将把它当成一个字符串。

弱类型语言

一种类型可以被忽略的语言,与强类型相反。VBScript 是弱类型的。在 VBScript 中,您可以将字符串 ‘12′ 和整数 3 进行连接得到字符串’123′,然后可以把它看成整数 123 ,所有这些都不需要任何的显示转换。

对象机制

具体怎么来理解这个“动态确定变量类型”,就要从Python的Object对象机制说起了。Objects(以下称对象)是Python对于数据

的抽象,Python中所有的数据,都是由对象或者对象之间的关系表示的,函数是对象,字符串是对象,每个东西都是对象的概念。每一个对象都有三种属性:

实体,类型和值。理解实体是理解对象中很重要的一步,实体一旦被创建,那么就一直不会改变,也不会被显式摧毁,同时通常意义来讲,决定对象所支持的操作方

式的类型(type,包括number,string,tuple及其他)也不会改变,改变的只可能是它的值。如果要找一个具体点的说明,实体就相当于对

象在内存中的地址,是本质存在。而类型和值都只是实体的外在呈现。然后Python提供一些接口让使用者和对象交互,比如id()函数用来获得对象实体的
整形表示(实际在这里就是地址),type()函数获取其类型。

这个object机制,就是c所不具备的,主要体现在下面几点:

1 刚才说了,c是一个静态类型语言,我们可以定义int a, char
b等等,但必须是在源代码里面事先规定。比如我们可以在Python里面任意一处直接规定a =
“lk”,这样,a的类型就是string,这是在其赋值的时候才决定的,我们无须在代码中明确写出。而在C里面,我们必须显式规定char *a =
“lk”,也就是人工事先规定好a的类型

2 由于在C中,没有对象这个概念,只有“数据的表示”,比如说,如果有两个int变量a和b,我们想比较大小,可以用a ==
b来判断,但是如果是两个字符串变量a和b,我们就不得不用strcmp来比较了,因为此时,a和b本质上是指向字符串的指针,如果直接还是用==比较,
那比较的实际是指针中存储的值——地址。

在Java中呢,我们通过使用 str1 == str2 可以确定两个字符串变量是否指向同一块物理内存位置,这叫做“对象同一性”。在 Java 中要比较两个字符串值,你要使用 str1.equals(str2)。

然后在Python中,和前两者都不一样,由于对象的引入,我们可以用“is”这个运算符来比较两个对象的实体,和具体对象的type就没有关系
了,比如你的对象是tuple也好,string也好,甚至class也好,都可以用”is”来比较,本质上就是“对象同一性”的比较,和Java中
的==类似,和 C中的pointer比较类似。Python中也有==比较,这个就是值比较了。

3
由于对象机制的引入,让Python的使用非常灵活,比如我们可以用自省方法来查看内存中以对象形式存在的其它模块和函数,获取它们的信息,并对它们进行
操作。用这种方法,你可以定义没有名称的函数,不按函数声明的参数顺序调用函数,甚至引用事先并不知道名称的函数。 这些操作在C中都是不可想象的。

4 还有一个很有意思的细节,就是类型对对象行为的影响是各方面的,比如说,a = 1; b =
1这个语句中,在Python里面引发的,可能是a,b同时指向一个值为1的对象,也可能是分别指向两个值为1的对象。而例如这个语句,c = []; d
= [],那么c和d是肯定指向不同的,新创建的空list的。没完,如果是”c = d =
[]“这个语句呢?此时,c和d又指向了相同的list对象了。这些区别,都是在c中没有的。

最后,我们来说说为什么python慢。主要原因就是function call
overhead比较大。因为所有东西现在都是对象了,contruct 和destroy 花费也大。连1 + 1 都是 function
call,像’12′+’45′ 这样的要 create a third string object, then calls the string
obj’s __add。可想而知,速度如何能快起来?

列表和数组

分析Python中的list和C中的数组总是很有趣的。相信可能一些朋友和一样,初学列表的时候,都是把它当作是数组来学的。最初对于list和数组区别的定性,主要是集中在两点。首先,list可以包含很多不同的数据类型,比如

["this", 1, "is", "an", "array"]

这个List,如果放在C中,其实是一个字符串数组,相当于二维的了。

其次呢,list有很多方法,其本身就是一个对象,这个和C的单纯数组是不同的。对于List的操作很多样,因为有方法也有重载的运算符。也带来一些问题,比如下面这个例子:

加入我们要产生一个多维列表,用下面这个语句

A = [[None] * 2] * 3

结果,A的值会是

[[None, None], [None, None], [None, None]]

初一看没问题,典型的二维数组形式的列表。好,现在我们想修改第一个None的值,用语句

A[0][0] = 5

现在我们再来看看A的值:

[[5, None], [5, None], [5, None]]

发现问题没有?这是因为用 * 来复制时,只是创建了对这个对象的引用,而不是真正的创建了它。 *3 创建了一个包含三个引用的列表,这三个引用都指向同一个长度为2的列表。其中一个行的改变会显示在所有行中,这当然不是你想要的。解决方法当然有,我们这样来创建

A = [None]*3
for i in range(3):
A[i] = [None] * 2

这样创建了一个包含三个不同的长度为2的列表。

所以,还是一直强调的,越复杂的东西,越灵活,也越容易出错。

代码优化

C是一个很简单的语言,当我们考虑优化的时候,通常想得也很简单,比如系统级调用越少越好(缓冲区机制),消除循环的低效率和不必要的系统引用,等
等,其实主要都是基于系统和硬件细节考虑的。而Python就完全不一样了,当然上面说的这些优化形式,对于Python仍然是实用的,但由于
Python的语法形式千差万别,库和模块多种多样,所以对于语言本身而言,就有很多值得注意的优化要点,举几个例子吧。

比如我们有一个list L1,想要构建一个新的list L2,L2包括L1的头4个元素。按照最直接的想法,代码应该是

L2 = []
for i in range[3]:
L2.append(L1[i])

而更加优化和优美的版本是

L2 = L1[:3]

再比如,如果s1..s7是大字符串(10K+),那么join([s1,s2,s3,s4,s5,s6,s7])就会比
s1+s2+s3+s4+s5+s6+s7快得多,因为后者会计算很多次子表达式,而join()则在一次过程中完成所有的复制。还有,对于字符串操作,
对字符串对象使用replace()方法。仅当在没有固定字符串模式时才使用正则表达式。

所以说,以优化为评判标准,如果说C是短小精悍,Python就是博大精深。

include和import

在C语言中的include非常简单,因为形式单一,意义明确,当你需要用到外部函数等资源时,就用include。而Python中有一个相似的
机制,就是import。乍一看,这两个家伙挺像的,不都是我们要用外部资源(最常见的就是函数或者模块(Python))时就用这个来指明么?其实不

然,两者的处理机制本质区别在于,C中的include是用于告诉预处理器,这个include指定的文件的内容,你都给我当作在本地源文件中出现过。而

import呢,不是简单的将后面的内容*直接*插入到本地里面去,这玩意更加灵活。事实上,几乎所有类似的机制,Python都比C灵活。这里不是说C
不好,C很简练,我其实更喜欢C。

简单说说这个灵活性。import在python中有三种形式,import X, from X import *( or a,b,c……),
X = __import__(’x')。最常用的是第二种,因为比较方便,不像第一种那样老是用X.mole来调用模块。from X
import *只是import那些public的mole(一般都是不以__命名的模块),也可以指定a,b,c来import。

什么时候用哪一种形式呢?应该说,在大多数的模块文档里,都会明确告诉你应该用哪种形式。如果需要用到很多对象,那么from X import
*可能更合适一些,但是,就目前来看,大多数第三方Python库都不推荐使用from molename import *
这种格式。这样做会使引入者的namespace混乱。很多人甚至对于那些专门设计用于这种模式的模块(包括Tkinter,
threading和matplot)都不采用这种方式。而如果你仅仅需要某个对象类a,那么用from X import a比用import
X.a更好,因为以后你调用a的函数直接用a.function()既可以了,不用加X。

如果你连自己希望import的模块都不知道怎么办?请注意,此时Python的优势就体现出来了,我们可以用
__import__(mole)来调用mole,其中这个mole是字符串,这样,可以在运行时再决定,你到底要调用什么mole。举
个例子:

def classFromMole (mole, Name):
mod = __import__ (mole)
return getattr (mod, Name)

这里,定义了一个函数classFromMole,你可以在代码的任何时候调用它,

o = classFromMole (MoleOfTheClass, NameOfTheAttribute)()

只需要传入字符串形式的你希望import的模块MoleOfTheClass和其中属性的名字NameOfTheAttribute(当然可以是数据也可以是方法),就能调用了,这个名字字符串不用事先指定,而是根据当时运行的情况来判断。

顺带说一句,Python中import的顺序也有默认规定,这个和C中的include有点类似,因为我们一般都是先include系统文件,再
include自己的头文件(而且还有<>和“”的区别)。Python中呢,一般应该按照以下顺序import模块:

1. 标准库模块 — 如 sys, os, getopt 等

2. 第三方模块

3. 本地实现的模块。

全局变量

这里谈全局变量呢,倒不是说Python和c的全局变量概念不同,他们的概念是相同的。只是在使用机制上,是有一些差异的。举个例子:

– mole.py –
globalvar = 1

def func():
print globalvar
# This makes someglobal readonly,
# any attempt to write to someglobal
# would create a new local variable.

def func2():
global globalvar
globalvar = 2
# this allows you to manipulate the global
# variable

在 func这个函数中,globalvar是只读的。如果你使用了globalvar =
xxx这种赋值语句,Python会重新创造一个新的本地对象并将新值赋给它,原来的对象值不变。而在func2函数中,由于我们事先申明了
globalvar是global的,那么此时的更改就直接在全局变量上生效。

Ⅱ 怎样把json转为protocol buffer

例子:

package org.protob;

import org.protob.W.helloworld;

import com.google.protobuf.;
import com.googlecode.protobuf.format.JsonFormat;
import com.googlecode.protobuf.format.JsonFormat.ParseException;
/**
* 下载 protoc-2.5.0-win32.zip
* cmd: protoc.exe --java_out=./ w.proto
* @author liangrui
*
*/
public class Main {

public static void main(String[] args) throws Exception {
main2(null);
main3(null);
main4(null);
}

//序列化 /返序列化
public static void main2(String[] args) throws {
//序列化
helloworld.Builder builder=helloworld.newBuilder();
builder.setId(10);
builder.setStr("fx");
builder.setOpt(20);
helloworld info=builder.build();
byte[] result=info.toByteArray() ;
//返序列化
helloworld msg = helloworld.parseFrom(result);
System.out.println(msg);

}

//protobuf转json
public static void main3(String[] args) throws {

//序列化
helloworld.Builder builder=helloworld.newBuilder();
builder.setId(10);
builder.setStr("fx");
builder.setOpt(20);
helloworld info=builder.build();
byte[] result=info.toByteArray() ;

//返序列化
helloworld hello = helloworld.parseFrom(result);
System.out.println(hello);

String jsonFormat =JsonFormat.printToString(hello);
System.out.println(jsonFormat);

}

//josn转protobuf
public static void main4(String[] args) throws ParseException {
helloworld.Builder builder =helloworld.newBuilder();
String jsonFormat = "{id:11,str:'xxx',opt:50}";
JsonFormat.merge(jsonFormat, builder);

System.out.println(builder.build());

}

}
/**
output:
id: 10
str: "fx"
opt: 20

id: 10
str: "fx"
opt: 20

{"id": 10,"str": "fx","opt": 20}
id: 11
str: "xxx"
opt: 50
*/

proto文件 w.proto

package org.protob;
message helloworld
{
required int32 id = 1; // ID
required string str = 2; // str
optional int32 opt = 3; //optional field
}

生成后的java类

// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: w.proto

package org.protob;

public final class W {
private W() {}
public static void registerAllExtensions(
com.google.protobuf.ExtensionRegistry registry) {
}
public interface helloworldOrBuilder
extends com.google.protobuf.MessageOrBuilder {

// required int32 id = 1;
/**
* <code>required int32 id = 1;</code>
*
* <pre>
* ID
* </pre>
*/
boolean hasId();
/**
* <code>required int32 id = 1;</code>
*
* <pre>
* ID
* </pre>
*/
int getId();

// required string str = 2;
/**
* <code>required string str = 2;</code>
*
* <pre>
* str
* </pre>
*/
boolean hasStr();
/**
* <code>required string str = 2;</code>
*
* <pre>
* str
* </pre>
*/
java.lang.String getStr();
/**
* <code>required string str = 2;</code>
*
* <pre>
* str
* </pre>
*/
com.google.protobuf.ByteString
getStrBytes();

// optional int32 opt = 3;
/**
* <code>optional int32 opt = 3;</code>
*
* <pre>
*optional field
* </pre>
*/
boolean hasOpt();
/**
* <code>optional int32 opt = 3;</code>
*
* <pre>
*optional field
* </pre>
*/
int getOpt();
}
/**
* Protobuf type {@code org.protob.helloworld}
*/
public static final class helloworld extends
com.google.protobuf.GeneratedMessage
implements helloworldOrBuilder {
// Use helloworld.newBuilder() to construct.
private helloworld(com.google.protobuf.GeneratedMessage.Builder<?> builder) {
super(builder);
this.unknownFields = builder.getUnknownFields();
}
private helloworld(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); }

private static final helloworld defaultInstance;
public static helloworld getDefaultInstance() {
return defaultInstance;
}

public helloworld getDefaultInstanceForType() {
return defaultInstance;
}

private final com.google.protobuf.UnknownFieldSet unknownFields;
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private helloworld(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf. {
initFields();
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!parseUnknownField(input, unknownFields,
extensionRegistry, tag)) {
done = true;
}
break;
}
case 8: {
bitField0_ |= 0x00000001;
id_ = input.readInt32();
break;
}
case 18: {
bitField0_ |= 0x00000002;
str_ = input.readBytes();
break;
}
case 24: {
bitField0_ |= 0x00000004;
opt_ = input.readInt32();
break;
}
}
}
} catch (com.google.protobuf. e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.(
e.getMessage()).setUnfinishedMessage(this);
} finally {
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.protob.W.internal_static_org_protob_helloworld_descriptor;
}

protected com.google.protobuf.GeneratedMessage.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.protob.W.internal_static_org_protob_helloworld_fieldAccessorTable
.(
org.protob.W.helloworld.class, org.protob.W.helloworld.Builder.class);
}

public static com.google.protobuf.Parser<helloworld> PARSER =
new com.google.protobuf.AbstractParser<helloworld>() {
public helloworld parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf. {
return new helloworld(input, extensionRegistry);
}
};

@java.lang.Override
public com.google.protobuf.Parser<helloworld> getParserForType() {
return PARSER;
}

Ⅲ 为什么C++是Google 大部分开源项目的主要编程语言

Google的C++开源代码项目
v8 - V8 JavaScript Engine
V8 是 Google 的开源 JavaScript 引擎。
V8 采用 C++ 编写,可在谷歌浏览器(来自 Google 的开源浏览器)中使用。
V8 根据 ECMA-262 第三版中的说明使用 ECMAScript,并在使用 IA-32 或 ARM 处理器的 Windows XP 和 Vista、Mac OS X 10.5 (Leopard) 以及 Linux 系统中运行。
V8 可以独立运行,也可以嵌入任何 C++ 应用程序中。

nativeclient - Native code for web apps
Native Client是一个在Web应用程序中运行本地代码(目前只支持x86架构)的开源的研究性技术,提供更好的“富客户端”用户体验。它允许网络开发者编写更强大的Web程序,这些程序直接通过系统运行而不用通过浏览器来进行,据Google称,它到最后将允许网络开发者开发和桌面软件一样的的web程序,这些程序将带来更快的速度。Native Client类似于微软的ActiveX技术,它还能在Linux和Mac OS X下运行。目前它尚未支持IE,仅支持Google Chrome, Firefox, Safari 和Opera。

tesseract-ocr - An OCR Engine that was developed at HP Labs between 1985 and 1995... and now at Google.
OCR(Optical Character Recognition):光学字符识别,是指对图片文件中的文字进行分析识别,获取的过程。
Tesseract:开源的OCR识别引擎,初期Tesseract引擎由HP实验室研发,后来贡献给了开源软件业,后经由Google进行改进,消除bug,优化,重新发布。当前版本为3.01.

google-glog - Logging library for C++
Google glog是一个基于程序级记录日志信息的c++库,编程使用方式与c++的stream操作类似,例:
LOG(INFO) << "Found " << num_cookies << " cookies";

double-conversion - Binary-decimal and decimal-binary routines for IEEE doubles.
从V8引擎中抽出的有关数值计算相关的代码,包括大数计算,数值到字符串转换等

googletest - Google C++ Testing Framework
gtest测试框架[1]是在不同平台上(Linux,Mac OS X,Windows,Cygwin,Windows CE和Symbian)为编写C++测试而生成的。它是基于xUnit架构的测试框架,支持自动发现测试,丰富的断言集,用户定义的断言,death测试,致命与非致命的失败,类型参数化测试,各类运行测试的选项和XML的测试报告。

googlemock - Google C++ Mocking Framework
googlemockmock技术,在c++单元测试可以随意修改函数行为的技术。
googlemock是google基于gtest开发的mock框架,适用于c++单元测试。

libphonenumber - Google's phone number handling library, powering Android and more
一个专门用于处理电话号码的库

google-diff-match-patch - Diff, Match and Patch libraries for Plain Text
google-diff-match-patch这个类库提供了强大的算法用于纯文本内容的差异比较,匹配,打补丁,实现同步纯文本所需要执行一些操作。支持多种语言包括:Java、JavaScript、C++、C#、Objective C、Lua和Python。

libkml - a KML library written in C++ with bindings to other languages
libKML是解析,生成和操作KML的库。使用OGC KML2.2标准。
KML,是 Keyhole 标记语言(Keyhole Markup Language)的缩写,是一种采用 XML 语法与格式的语言,用于描述和保存地理信息(如点、线、图像、多边形和模型等),可以被 Google Earth 和 Google Maps 识别并显示。您可以使用 KML 来与其他 Google Earth 或 Google Maps 用户分享地标与信息。当然,您也可以从 Google Earth 社区 等相关网站获得有趣的 KML 文件。Google Earth 和 Google Maps 处理 KML 文件的方式与网页浏览器处理 HTML 和 XML 文件的方式类似。像 HTML 一样,KML 使用包含名称、属性的标签(tag)来确定显示方式。因此,您可将 Google Earth 和 Google Maps 视为 KML 文件浏览器。单击此处可获得更多信息。

gdata-cpp-util - Google Data APIs C++ utility library
一个Google Data APIs 的工具库,可以GET/POST/PUT/DELETE

lutok - Lightweight C++ API for Lua
是一个 Lua 的 C++ wrapper
Lua 是一个小巧的脚本语言。是巴西里约热内卢天主教大学(Pontifical Catholic University of Rio de Janeiro)里的一个研究小组,由Roberto Ierusalimschy、Waldemar Celes 和 Luiz Henrique de Figueiredo所组成并于1993年开发。 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。Lua由标准C编写而成,几乎在所有操作系统和平台上都可以编译,运行。Lua并没有提供强大的库,这是由它的定位决定的。所以Lua不适合作为开发独立应用程序的语言。Lua 有一个同时进行的JIT项目,提供在特定平台上的即时编译功能。

dcs-bwt-compressor - Data compressor program and library
dcsbwt是一个基于Burrower-Wheeler变换的数据压缩程序库

treetree - generic n-ary trees for C++
TreeTree (http://code.google.com/p/treetree/)是一个只包含头文件的 C++ Library。它实现了一个通用的 树形结构容器类(遵守 STL约定),并且实现了 operator >> 和 operator <<。
它的底层包含一个双向链表。在前项指针和后项指针以外,每个树节点还包含第三个指针--指向所有子节点的列表。这个实现高效,并且 API 非常清晰。TreeTree 可以表达任何使用Lisp的S表达式能表达的东西(例如推理树(inference trees, programs)等)。
可以使用前序和后序遍历,只遍历某个节点的子节点,或者只是在叶子节点遍历。示例的选项还包含遍历子树(如f(g(x,y),z) 前序遍历,是f(g(x,y),z), g(x,y),x,y和z.

ctemplate - Powerful but simple template language for C++
ctemplate (Google-ctemplate)的设计哲学是轻量级,快速,且逻辑和界面分离,因此和ClearSilver和Teng是有一些差异的。比如Ctemplate就没有模板函数,没有条件判断和循环语句(当然,它可以通过变通的方式来实现)。 ctemplate大体上分为两个部分,一部分是模板,另一部分是数据字典。模板定义了界面展现的形式(V),数据字典就是填充模板的数据(M),你自己写业务逻辑去控制界面展现(C),典型的MVC模型。

sparsehash - An extremely memory-efficient hash_map implementation
Google Sparse Hash 是 Google 一个很节省内存的 hash map 实现

gflags - Commandline flags mole for C++
Google GFlags 是一个命令行标记的处理库,它可以替代“getopt()”,其内置对C++的支持比如string。

protobuf - Protocol Buffers - Google's data interchange format
Google Protocol Buffer 是一个平台无关、语言无关的结构化数据的序列化与反序列化工具。
protocol buffer,可以用来在跨进程、跨机器,不同操作系统,不同编程语言之间进行数据交换。类似于微软的COM IDL或者XML,但是解析速度更快,需要传输字节数更少。(c+
+, java, python)

gperftools - Fast, multi-threaded malloc() and nifty performance analysis tools
TCMalloc,heap检测,是一个google用于性能检测的工具。(c++)

google-breakpad - Crash reporting

breakpad,一个项目的开始需要做一些什么样的基础设施,crash mp和运行logging毫无疑问都是应该有的,这个项目就是负责在crash的时候收集信息,发出crash mp报告的。

Ⅳ 初学python,感受和C的不同

从开始看Python到现在也有半个多月了,前后看了Python核心编程和Dive into
Python两本书。话说半个月看两本,是个人都知道有多囫囵吞枣,这也是因为我暂时没有需求拿这个做大型开发,主要是平时的小程序test用一用。所以

我的策略是,整体浏览,用到时候现查。话说这核心编程第一版太古老了,老在讲2.2之前的东西,我看的翻译电子版,翻译得也不好,很晦涩。看完这个后还有
点云里雾里,看网上人家说DIP好,啄木鸟还有免费电子文档,就找来看这个。怎么说呢,讲的比核心编程好,但不适合第一次看的初学者。我之所以觉得讲得
好,是因为看核心编程,有些概念还有些模糊,看了这本书就明白不少了。要是初学者上来就看这本,保证不好理解。

下面就是在学习的过程中,在翻阅资料的过程中,总结的一些C和python比较明显的不同之处,有大方向的,也有细节的。肯定没有总结完,比如动态

函数,lambda这些,我都懒得往上写了。实际上,作为两种完全不同的语言,下面这些差异只是冰山一角而已。权当抛砖引玉吧,至少应该对和我有相同研究

兴趣,正在考虑是否学习另一门语言的朋友有点帮助。此文也算是DIP的学习笔记吧。顺带说一句,要是有朋友了解,可以帮忙推荐一下实战性强的Python
教材,语言这东西,不多练手,光比划,是不可能学好的。

学习目的

我的以后的研究方向是嵌入式,显然,C语言是我的主要语言。我不是一个语言爱好者,我以前觉得,对于做研究而不是应用的人来说,了解多门语言,不如

精通一门语言。之所以去看python,主要还是因为python更有利于快速开发一些程序,也是因为现在认识到,研究和应用是不能分离的。个人以为,要
想在计算机工程的竞争中立足,必须懂C语言。因为真正要做高性能编程,
不可能将机器的体系架构抛到脑后让Python虚拟机(或Java虚拟机等)帮你搞定所有底层。越来越多的CPU
core,越来越恐怖的内存性能瓶颈,对于上层开发人员来说,无所谓,但是对高性能程序开发人员来说,这些是无法透明的。很多应用,还是自己掌控比较有
效。这些场合中,汇编和C还是不可替代的。但是,光知道C是不够的,掌握一门面向对象语言,相对更高层的语言,不仅对以后的个人发展有利,也会对自己的技
术认识产生帮助。

如果要问对我来说谁更重要,我觉得还是C更重要。C的学习曲线更陡,貌似简单,实际上到处都是陷阱,看上去比较简单低效的程序,也不是学1,2个月

就能搞定的。谈到优化的深层次和难度嘛,需要的功底是按年算的。但是一旦你C语言的基础打好了,对计算机的理解,对其他语言的理解都是大有裨益的。比如,

如果你有C基础,可以说,学过1天python,就能写的出来一些不短的程序。后面的优化也不是什么大不了的算法,都是非常基本的语句换来换去。当然这里
不是说 Python不好,实际上,上层应用,Python比C方便的不是一个层次。

很多人觉得,既然懂C了,那么进一步掌握C++应该是水到渠成,但C++不是C的超集,而我又不喜欢C++的繁琐和巨大,所以才决定看一看Python。我很喜欢Python的优雅与快捷。

语言类型

和C不一样,Python是一种动态类型语言,又是强类型语言。这个分类怎么理解呢?大概是可以按照下列说明来分类的:

静态类型语言

一种在编译期间就确定数据类型的语言。大多数静态类型语言是通过要求在使用任一变量之前声明其数据类型来保证这一点的。Java和 C 是静态类型语言。

动态类型语言

一种在运行期间才去确定数据类型的语言,与静态类型相反。Python 是动态类型的,因为它们确定一个变量的类型是在您第一次给它赋值的时候。

强类型语言

一种总是强制类型定义的语言。Java 和 Python 是强制类型定义的。您有一个整数,如果不明确地进行转换 ,不能将把它当成一个字符串。

弱类型语言

一种类型可以被忽略的语言,与强类型相反。VBScript 是弱类型的。在 VBScript 中,您可以将字符串 ‘12′ 和整数 3 进行连接得到字符串’123′,然后可以把它看成整数 123 ,所有这些都不需要任何的显示转换。

对象机制

具体怎么来理解这个“动态确定变量类型”,就要从Python的Object对象机制说起了。Objects(以下称对象)是Python对于数据

的抽象,Python中所有的数据,都是由对象或者对象之间的关系表示的,函数是对象,字符串是对象,每个东西都是对象的概念。每一个对象都有三种属性:

实体,类型和值。理解实体是理解对象中很重要的一步,实体一旦被创建,那么就一直不会改变,也不会被显式摧毁,同时通常意义来讲,决定对象所支持的操作方

式的类型(type,包括number,string,tuple及其他)也不会改变,改变的只可能是它的值。如果要找一个具体点的说明,实体就相当于对

象在内存中的地址,是本质存在。而类型和值都只是实体的外在呈现。然后Python提供一些接口让使用者和对象交互,比如id()函数用来获得对象实体的
整形表示(实际在这里就是地址),type()函数获取其类型。

这个object机制,就是c所不具备的,主要体现在下面几点:

1 刚才说了,c是一个静态类型语言,我们可以定义int a, char
b等等,但必须是在源代码里面事先规定。比如我们可以在Python里面任意一处直接规定a =
“lk”,这样,a的类型就是string,这是在其赋值的时候才决定的,我们无须在代码中明确写出。而在C里面,我们必须显式规定char *a =
“lk”,也就是人工事先规定好a的类型

2 由于在C中,没有对象这个概念,只有“数据的表示”,比如说,如果有两个int变量a和b,我们想比较大小,可以用a ==
b来判断,但是如果是两个字符串变量a和b,我们就不得不用strcmp来比较了,因为此时,a和b本质上是指向字符串的指针,如果直接还是用==比较,
那比较的实际是指针中存储的值——地址。

在Java中呢,我们通过使用 str1 == str2 可以确定两个字符串变量是否指向同一块物理内存位置,这叫做“对象同一性”。在 Java 中要比较两个字符串值,你要使用 str1.equals(str2)。

然后在Python中,和前两者都不一样,由于对象的引入,我们可以用“is”这个运算符来比较两个对象的实体,和具体对象的type就没有关系
了,比如你的对象是tuple也好,string也好,甚至class也好,都可以用”is”来比较,本质上就是“对象同一性”的比较,和Java中
的==类似,和 C中的pointer比较类似。Python中也有==比较,这个就是值比较了。

3
由于对象机制的引入,让Python的使用非常灵活,比如我们可以用自省方法来查看内存中以对象形式存在的其它模块和函数,获取它们的信息,并对它们进行
操作。用这种方法,你可以定义没有名称的函数,不按函数声明的参数顺序调用函数,甚至引用事先并不知道名称的函数。 这些操作在C中都是不可想象的。

4 还有一个很有意思的细节,就是类型对对象行为的影响是各方面的,比如说,a = 1; b =
1这个语句中,在Python里面引发的,可能是a,b同时指向一个值为1的对象,也可能是分别指向两个值为1的对象。而例如这个语句,c = []; d
= [],那么c和d是肯定指向不同的,新创建的空list的。没完,如果是”c = d =
[]“这个语句呢?此时,c和d又指向了相同的list对象了。这些区别,都是在c中没有的。

最后,我们来说说为什么python慢。主要原因就是function call
overhead比较大。因为所有东西现在都是对象了,contruct 和destroy 花费也大。连1 + 1 都是 function
call,像’12′+’45′ 这样的要 create a third string object, then calls the string
obj’s __add。可想而知,速度如何能快起来?

列表和数组

分析Python中的list和C中的数组总是很有趣的。相信可能一些朋友和一样,初学列表的时候,都是把它当作是数组来学的。最初对于list和数组区别的定性,主要是集中在两点。首先,list可以包含很多不同的数据类型,比如

["this", 1, "is", "an", "array"]

这个List,如果放在C中,其实是一个字符串数组,相当于二维的了。

其次呢,list有很多方法,其本身就是一个对象,这个和C的单纯数组是不同的。对于List的操作很多样,因为有方法也有重载的运算符。也带来一些问题,比如下面这个例子:

加入我们要产生一个多维列表,用下面这个语句

A = [[None] * 2] * 3

结果,A的值会是

[[None, None], [None, None], [None, None]]

初一看没问题,典型的二维数组形式的列表。好,现在我们想修改第一个None的值,用语句

A[0][0] = 5

现在我们再来看看A的值:

[[5, None], [5, None], [5, None]]

发现问题没有?这是因为用 * 来复制时,只是创建了对这个对象的引用,而不是真正的创建了它。 *3 创建了一个包含三个引用的列表,这三个引用都指向同一个长度为2的列表。其中一个行的改变会显示在所有行中,这当然不是你想要的。解决方法当然有,我们这样来创建

A = [None]*3
for i in range(3):
A[i] = [None] * 2

这样创建了一个包含三个不同的长度为2的列表。

所以,还是一直强调的,越复杂的东西,越灵活,也越容易出错。

代码优化

C是一个很简单的语言,当我们考虑优化的时候,通常想得也很简单,比如系统级调用越少越好(缓冲区机制),消除循环的低效率和不必要的系统引用,等
等,其实主要都是基于系统和硬件细节考虑的。而Python就完全不一样了,当然上面说的这些优化形式,对于Python仍然是实用的,但由于
Python的语法形式千差万别,库和模块多种多样,所以对于语言本身而言,就有很多值得注意的优化要点,举几个例子吧。

比如我们有一个list L1,想要构建一个新的list L2,L2包括L1的头4个元素。按照最直接的想法,代码应该是

L2 = []
for i in range[3]:
L2.append(L1[i])

而更加优化和优美的版本是

L2 = L1[:3]

再比如,如果s1..s7是大字符串(10K+),那么join([s1,s2,s3,s4,s5,s6,s7])就会比
s1+s2+s3+s4+s5+s6+s7快得多,因为后者会计算很多次子表达式,而join()则在一次过程中完成所有的复制。还有,对于字符串操作,
对字符串对象使用replace()方法。仅当在没有固定字符串模式时才使用正则表达式。

所以说,以优化为评判标准,如果说C是短小精悍,Python就是博大精深。

include和import

在C语言中的include非常简单,因为形式单一,意义明确,当你需要用到外部函数等资源时,就用include。而Python中有一个相似的
机制,就是import。乍一看,这两个家伙挺像的,不都是我们要用外部资源(最常见的就是函数或者模块(Python))时就用这个来指明么?其实不

然,两者的处理机制本质区别在于,C中的include是用于告诉预处理器,这个include指定的文件的内容,你都给我当作在本地源文件中出现过。而

import呢,不是简单的将后面的内容*直接*插入到本地里面去,这玩意更加灵活。事实上,几乎所有类似的机制,Python都比C灵活。这里不是说C
不好,C很简练,我其实更喜欢C。

简单说说这个灵活性。import在python中有三种形式,import X, from X import *( or a,b,c……),
X = __import__(’x')。最常用的是第二种,因为比较方便,不像第一种那样老是用X.mole来调用模块。from X
import *只是import那些public的mole(一般都是不以__命名的模块),也可以指定a,b,c来import。

什么时候用哪一种形式呢?应该说,在大多数的模块文档里,都会明确告诉你应该用哪种形式。如果需要用到很多对象,那么from X import
*可能更合适一些,但是,就目前来看,大多数第三方Python库都不推荐使用from molename import *
这种格式。这样做会使引入者的namespace混乱。很多人甚至对于那些专门设计用于这种模式的模块(包括Tkinter,
threading和matplot)都不采用这种方式。而如果你仅仅需要某个对象类a,那么用from X import a比用import
X.a更好,因为以后你调用a的函数直接用a.function()既可以了,不用加X。

如果你连自己希望import的模块都不知道怎么办?请注意,此时Python的优势就体现出来了,我们可以用
__import__(mole)来调用mole,其中这个mole是字符串,这样,可以在运行时再决定,你到底要调用什么mole。举
个例子:

def classFromMole (mole, Name):
mod = __import__ (mole)
return getattr (mod, Name)

这里,定义了一个函数classFromMole,你可以在代码的任何时候调用它,

o = classFromMole (MoleOfTheClass, NameOfTheAttribute)()

只需要传入字符串形式的你希望import的模块MoleOfTheClass和其中属性的名字NameOfTheAttribute(当然可以是数据也可以是方法),就能调用了,这个名字字符串不用事先指定,而是根据当时运行的情况来判断。

顺带说一句,Python中import的顺序也有默认规定,这个和C中的include有点类似,因为我们一般都是先include系统文件,再
include自己的头文件(而且还有<>和“”的区别)。Python中呢,一般应该按照以下顺序import模块:

1. 标准库模块 — 如 sys, os, getopt 等

2. 第三方模块

3. 本地实现的模块。

全局变量

这里谈全局变量呢,倒不是说Python和c的全局变量概念不同,他们的概念是相同的。只是在使用机制上,是有一些差异的。举个例子:

– mole.py –
globalvar = 1

def func():
print globalvar
# This makes someglobal readonly,
# any attempt to write to someglobal
# would create a new local variable.

def func2():
global globalvar
globalvar = 2
# this allows you to manipulate the global
# variable

在 func这个函数中,globalvar是只读的。如果你使用了globalvar =
xxx这种赋值语句,Python会重新创造一个新的本地对象并将新值赋给它,原来的对象值不变。而在func2函数中,由于我们事先申明了
globalvar是global的,那么此时的更改就直接在全局变量上生效。

阅读全文

与javagetopt相关的资料

热点内容
程序员放弃后会怎样 浏览:160
河北模具编程 浏览:178
adb查找命令 浏览:309
安卓手机视频文件夹怎么打开 浏览:303
平板加密手机后怎么关闭 浏览:557
流媒体服务器应该注意什么 浏览:528
d8命令编译 浏览:942
压缩包解压需要多少空间 浏览:139
如何查找app属性 浏览:380
android人脸识别技术 浏览:305
pc104编程 浏览:329
二维码反编译破解推广 浏览:674
修改服务器的mac地址 浏览:521
好玩的编程软件 浏览:892
编程语言创始人有钱吗 浏览:797
短视频app怎么获客 浏览:8
查看云服务器的应用 浏览:427
javadump工具 浏览:558
程序员16g 浏览:421
程序员没有办法成为top怎么办 浏览:196