① 用python怎么做出概率分布图啊,新手菜鸟,求高手指点
如果没有编程经验,建议不要看太深入的书籍,先从简单的print 学起,然后写一个简单的函数,函数可以只输出些简单字符串,然后了解一下函数,比如函数的参数形式,以及函数与method的区别。
然后使用一些简单的类型,比如tuple,dict 等,一个一个了解,了解一个,慢慢的练习。如果有哪些不懂,可以网络一下,多网络(谷歌)。
看哪些书都无所谓,刚开始没有什么好坏之分,只要你看得进,看得懂,就看那一本,别纠结于看哪本书。
② python或matlab画二维随机数组的密度分布曲面图
申请一个维的数组数据..通过三维坐标描述关系算出另外两个维。传到一个3D画布就出来了..
③ python中turtle的定义放在函数的不同位置,画的图不一样是为什么
t = turtle.Turtle() 放在 import turtle下面,那函数triangle_boogie就不知道t是什么了,当然报错
④ 怎么用python画数据分布直方图
计算频数:
给定一个序列t:
hist = {}
for x in t:
hist[x] = hist.get(x,0)+1
得到的结果是一个将值映射到其频数的字典。将其除以n即可把频数转换成频率,这称为归一化:
n = float(len(t))
pmf = {}
for x, freq in hist.items():
pmf[x] = freq/n
绘制直方图:
Vals, freqs = hist.Render()
rectangles = pyplot.bar(vals, freqs)
pyplot.show()
绘制概率质量函数:
采用柱状图,可以用pyplot.bar或myplot.Hist。如果Pmf中的值不多,柱状图就比较合适
采用折线图,可以用pyplot.plot或者myplot.Pmf。如果Pmf中的值较多,且比较平滑,折线图就比较合适。
*百分比差异图
直观显示两组数据的分布差异,详见教材。
⑤ 如何用Python绘制JS地图
Folium是建立在Python生态系统的数据整理(Datawrangling)能力和Leaflet.js库的映射能力之上的开源库。用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化。
概念
Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示。它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记。
这个开源库中有许多来自OpenStreetMap、MapQuest Open、MapQuestOpen
Aerial、Mapbox和Stamen的内建地图元件,而且支持使用Mapbox或Cloudmade的API密钥来定制个性化的地图元件。
Folium支持GeoJSON和TopoJSON两种文件格式的叠加,也可以将数据连接到这两种文件格式的叠加层,最后可使用color-brewer
配色方案创建分布图。
安装
安装folium包
开始创建地图
创建底图,传入起始坐标到Folium地图中:
importfolium
map_osm= folium.Map(location=[45.5236, -122.6750]) #输入坐标
map_osm.create_map(path='osm.html')
Folium默认使用OpenStreetMap元件,但是Stamen Terrain, Stamen Toner, Mapbox Bright 和MapboxControl空间元件是内置的:
#输入位置,tiles,缩放比例
stamen =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',zoom_start=13)
stamen.create_map(path='stamen_toner.html')#保存图片
Folium也支持Cloudmade 和 Mapbox的个性化定制地图元件,只需简单地传入API_key :
custom =folium.Map(location=[45.5236, -122.6750], tiles='Mapbox',
API_key='wrobstory.map-12345678')
最后,Folium支持传入任何与Leaflet.js兼容的个性化地图元件:
tileset= r'http://{s}.tiles.yourtiles.com/{z}/{x}/{y}.png'
map =folium.Map(location=[45.372, -121.6972], zoom_start=12,
tiles=tileset, attr='My DataAttribution')
地图标记
Folium支持多种标记类型的绘制,下面从一个简单的Leaflet类型的位置标记弹出文本开始:
map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,
tiles='Stamen Terrain')
map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows')#文字标记
map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge')
map_1.create_map(path='mthood.html')
Folium支持多种颜色和标记图标类型:
map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,tiles='Stamen Terrain')
map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows',marker_icon='cloud') #标记图标类型为云
map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge',marker_color='green') #标记颜色为绿色
map_1.simple_marker([45.3300,-121.6823], popup='Some OtherLocation',marker_color='red',marker_icon='info-sign')
#标记颜色为红色,标记图标为“info-sign”)
map_1.create_map(path='iconTest.html')
Folium也支持使用个性化的尺寸和颜色进行圆形标记:
map_2 =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',
zoom_start=13)
map_2.simple_marker(location=[45.5244,-122.6699], popup='The Waterfront')
简单树叶类型标记
map_2.circle_marker(location=[45.5215,-122.6261], radius=500,
popup='Laurelhurst Park',line_color='#3186cc',
fill_color='#3186cc')#圆形标记
map_2.create_map(path='portland.html')
Folium有一个简便的功能可以使经/纬度悬浮于地图上:
map_3 =folium.Map(location=[46.1991, -122.1889], tiles='Stamen Terrain',zoom_start=13)
map_3.lat_lng_popover()
map_3.create_map(path='sthelens.html')
Click-for-marker功能允许标记动态放置:
map_4 =folium.Map(location=[46.8527, -121.7649], tiles='Stamen Terrain',zoom_start=13)
map_4.simple_marker(location=[46.8354,-121.7325], popup='Camp Muir')
map_4.click_for_marker(popup='Waypoint')
map_4.create_map(path='mtrainier.html')
Folium也支持来自Leaflet-DVF的Polygon(多边形)标记集:
map_5 =folium.Map(location=[45.5236, -122.6750], zoom_start=13)
map_5.polygon_marker(location=[45.5012,-122.6655], popup='Ross Island Bridge',fill_color='#132b5e', num_sides=3,radius=10)#三边形标记
map_5.polygon_marker(location=[45.5132,-122.6708], popup='Hawthorne Bridge',fill_color='#45647d', num_sides=4,radius=10)#四边形标记
map_5.polygon_marker(location=[45.5275,-122.6692], popup='Steel Bridge',fill_color='#769d96', num_sides=6, radius=10)#四边形标记
map_5.polygon_marker(location=[45.5318,-122.6745], popup='Broadway Bridge',fill_color='#769d96', num_sides=8,radius=10) #八边形标记
map_5.create_map(path='bridges.html')
Vincent/Vega标记
Folium能够使用vincent 进行任何类型标记,并悬浮在地图上。
buoy_map= folium.Map(location=[46.3014, -123.7390], zoom_start=7,
tiles='StamenTerrain')
buoy_map.polygon_marker(location=[47.3489,-124.708], fill_color='#43d9de',radius=12, popup=(vis1, 'vis1.json'))
buoy_map.polygon_marker(location=[44.639,-124.5339], fill_color='#43d9de',radius=12, popup=(vis2, 'vis2.json'))
buoy_map.polygon_marker(location=[46.216,-124.1280], fill_color='#43d9de',radius=12, popup=(vis3, 'vis3.json'))
GeoJSON/TopoJSON层叠加
GeoJSON 和TopoJSON层都可以导入到地图,不同的层可以在同一张地图上可视化出来:
geo_path= r'data/antarctic_ice_edge.json'
topo_path= r'data/antarctic_ice_shelf_topo.json'
ice_map= folium.Map(location=[-59.1759, -11.6016],tiles='Mapbox Bright', zoom_start=2)
ice_map.geo_json(geo_path=geo_path)#导入geoJson层
ice_map.geo_json(geo_path=topo_path,topojson='objects.antarctic_ice_shelf')#导入Toposon层
ice_map.create_map(path='ice_map.html')
分布图
Folium允许PandasDataFrames/Series类型和Geo/TopoJSON类型之间数据转换。Color Brewer 颜色方案也是内建在这个库,可以直接导入快速可视化不同的组合:
importfolium
importpandas as pd
state_geo= r'data/us-states.json'#地理位置文件
state_unemployment= r'data/US_Unemployment_Oct2012.csv'#美国失业率文件
state_data= pd.read_csv(state_unemployment)
#LetFolium determine the scale
map =folium.Map(location=[48, -102], zoom_start=3)
map.geo_json(geo_path=state_geo,data=state_data,
columns=['State', 'Unemployment'],
key_on='feature.id',
fill_color='YlGn',fill_opacity=0.7, line_opacity=0.2,
legend_name='Unemployment Rate(%)')
map.create_map(path='us_states.html')
基于D3阈值尺度,Folium在右上方创建图例,通过分位数创建最佳猜测值,导入设定的阈值很简单:
map.geo_json(geo_path=state_geo,data=state_data,
columns=['State', 'Unemployment'],
threshold_scale=[5, 6, 7, 8, 9,10],
key_on='feature.id',
fill_color='BuPu',fill_opacity=0.7, line_opacity=0.5,
legend_name='Unemployment Rate(%)',
reset=True)
map.create_map(path='us_states.html')
⑥ 用python语句,如何使散点图中的点分布在一定的范围内
使用循环的continue呗,满足就写入散点,不满足就略过
⑦ 怎样用python的matplotlib模块画累积分布图
下面的程序绘制随机变量X的累积分布函数和数组p的累加结果
>>> pl.plot(t, X.cdf(t))
>>> pl.plot(t2, np.add.accumulate(p)*(t2[1]-t2[0]))
⑧ Python 有100个左右的概率(float),如何按每0.1差值制作频率分布直方图(0-0.1,0.1-0.2等等)
画图需要引入额外的包,不过只是计算出十个数值还是很简单。
假设原始的概率值存在数组p中 例如 p = [0.05, 0.31, ...]
x=[0.0]*10#初始化10个区间
LL=0#有效数据个数
foryinp:
ifp<0||p>=1:#跳过非法值
continue
LL+=1;
x[int(10*y)]+=1.0
x=[y/LLforyinx]#频数->频率
⑨ 如何将已知数据用python写成正态分布并且画图
importnumpyasnp
importmatplotlib.pyplotasplt
y=[2,5,7,10,16,23,20,16,9,6,6,3,1,1]
x=[59,60,61,62,63,64,65,66,67,68,69,70,71,72]
fig,ax=plt.subplots()
ax.bar(x,y,0.3,alpha=0.5,color='b',label='abc')
plt.axis([55,75,0,25])
ax.set_xlabel('XXX')
ax.set_ylabel('YYY')
ax.set_title('ABC')
ax.legend()
fig.tight_layout()
plt.show()
⑩ Python怎么画一个圆柱体的温度分布图,求指点求详细代码
defellipse(a,b):
return[[a*math.cos(i*math.pi/180),b*math.sin(i*math.pi/180)]foriinrange(0,360)]
if__name__=="__main__":
l=ellipse(150,80)
turtle.up()
turtle.setpos(150,80)
turtle.down()
for(x,y)inl:
turtle.setpos(x,y)
turtle.setpos(x,y+100)
for(x,y)inl:
turtle.setpos(x,y+100)
turtle.up()
turtle.setpos(-150,90)
turtle.down()
turtle.setpos(x-300,y+100)
turtle.setpos(x-300,y)
turtle.done()