Ⅰ 一般python的分布式计算用什么框架
(1) 用什么语言都不能证明逼格,包括汇编,也包括lisp/haskell。
(2) 在适当的场合用适当的工具,解除耦合、减少重复、易于扩展才是对逼格的更高挑战。
比如有一组件对数据库有大量操作,我同事认为他要用C++模板元编程加上一些巧妙的设计模式来生成sql是逼格高的体现,我认为在这样的场景下至少要用上orm才能谈得上对逼格有要求。
Ⅱ python分布式爬虫是什么意思
一、分布式爬虫架构
在了解分布式爬虫架构之前,首先回顾一下Scrapy的架构,如下图所示。
我们需要做的就是在多台主机上同时运行爬虫任务协同爬取,而协同爬取的前提就是共享爬取队列。这样各台主机就不需要各自维护爬取队列,而是从共享爬取队列存取Request。但是各台主机还是有各自的Scheler和Downloader,所以调度和下载功能分别完成。如果不考虑队列存取性能消耗,爬取效率还是会成倍提高。
二、维护爬取队列
那么这个队列用什么来维护?首先需要考虑的就是性能问题。我们自然想到的是基于内存存储的Redis,它支持多种数据结构,例如列表(List)、集合(Set)、有序集合(Sorted Set)等,存取的操作也非常简单。
Redis支持的这几种数据结构存储各有优点。
列表有lpush()、lpop()、rpush()、rpop()方法,我们可以用它来实现先进先出式爬取队列,也可以实现先进后出栈式爬取队列。
集合的元素是无序的且不重复的,这样我们可以非常方便地实现随机排序且不重复的爬取队列。
有序集合带有分数表示,而Scrapy的Request也有优先级的控制,我们可以用它来实现带优先级调度的队列。
我们需要根据具体爬虫的需求来灵活选择不同的队列。
三、如何去重
Scrapy有自动去重,它的去重使用了Python中的集合。这个集合记录了Scrapy中每个Request的指纹,这个指纹实际上就是Request的散列值。我们可以看看Scrapy的源代码,如下所示:
importhashlib
defrequest_fingerprint(request, include_headers=None):
ifinclude_headers:
include_headers = tuple(to_bytes(h.lower())
forhinsorted(include_headers))
cache = _fingerprint_cache.setdefault(request, {})
ifinclude_headersnotincache:
fp = hashlib.sha1()
fp.update(to_bytes(request.method))
fp.update(to_bytes(canonicalize_url(request.url)))
fp.update(request.bodyorb'')
ifinclude_headers:
forhdrininclude_headers:
ifhdrinrequest.headers:
fp.update(hdr)
forvinrequest.headers.getlist(hdr):
fp.update(v)
cache[include_headers] = fp.hexdigest()
returncache[include_headers]
request_fingerprint()就是计算Request指纹的方法,其方法内部使用的是hashlib的sha1()方法。计算的字段包括Request的Method、URL、Body、Headers这几部分内容,这里只要有一点不同,那么计算的结果就不同。计算得到的结果是加密后的字符串,也就是指纹。每个Request都有独有的指纹,指纹就是一个字符串,判定字符串是否重复比判定Request对象是否重复容易得多,所以指纹可以作为判定Request是否重复的依据。
那么我们如何判定重复呢?Scrapy是这样实现的,如下所示:
def__init__(self):
self.fingerprints = set()
defrequest_seen(self, request):
fp = self.request_fingerprint(request)
iffpinself.fingerprints:
returnTrue
self.fingerprints.add(fp)
在去重的类RFPDupeFilter中,有一个request_seen()方法,这个方法有一个参数request,它的作用就是检测该Request对象是否重复。这个方法调用request_fingerprint()获取该Request的指纹,检测这个指纹是否存在于fingerprints变量中,而fingerprints是一个集合,集合的元素都是不重复的。如果指纹存在,那么就返回True,说明该Request是重复的,否则这个指纹加入到集合中。如果下次还有相同的Request传递过来,指纹也是相同的,那么这时指纹就已经存在于集合中,Request对象就会直接判定为重复。这样去重的目的就实现了。
Scrapy的去重过程就是,利用集合元素的不重复特性来实现Request的去重。
对于分布式爬虫来说,我们肯定不能再用每个爬虫各自的集合来去重了。因为这样还是每个主机单独维护自己的集合,不能做到共享。多台主机如果生成了相同的Request,只能各自去重,各个主机之间就无法做到去重了。
那么要实现去重,这个指纹集合也需要是共享的,Redis正好有集合的存储数据结构,我们可以利用Redis的集合作为指纹集合,那么这样去重集合也是利用Redis共享的。每台主机新生成Request之后,把该Request的指纹与集合比对,如果指纹已经存在,说明该Request是重复的,否则将Request的指纹加入到这个集合中即可。利用同样的原理不同的存储结构我们也实现了分布式Reqeust的去重。
四、防止中断
在Scrapy中,爬虫运行时的Request队列放在内存中。爬虫运行中断后,这个队列的空间就被释放,此队列就被销毁了。所以一旦爬虫运行中断,爬虫再次运行就相当于全新的爬取过程。
要做到中断后继续爬取,我们可以将队列中的Request保存起来,下次爬取直接读取保存数据即可获取上次爬取的队列。我们在Scrapy中指定一个爬取队列的存储路径即可,这个路径使用JOB_DIR变量来标识,我们可以用如下命令来实现:
scrapy crawl spider -s JOB_DIR=crawls/spider
更加详细的使用方法可以参见官方文档,链接为:https://doc.scrapy.org/en/latest/topics/jobs.html。
在Scrapy中,我们实际是把爬取队列保存到本地,第二次爬取直接读取并恢复队列即可。那么在分布式架构中我们还用担心这个问题吗?不需要。因为爬取队列本身就是用数据库保存的,如果爬虫中断了,数据库中的Request依然是存在的,下次启动就会接着上次中断的地方继续爬取。
所以,当Redis的队列为空时,爬虫会重新爬取;当Redis的队列不为空时,爬虫便会接着上次中断之处继续爬取。
五、架构实现
我们接下来就需要在程序中实现这个架构了。首先实现一个共享的爬取队列,还要实现去重的功能。另外,重写一个Scheer的实现,使之可以从共享的爬取队列存取Request。
幸运的是,已经有人实现了这些逻辑和架构,并发布成叫Scrapy-Redis的Python包。接下来,我们看看Scrapy-Redis的源码实现,以及它的详细工作原理
Ⅲ 如何用 python 构建一个简单的分布式系统
从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数
据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。
Ⅳ Python对分布式有什么支持
if rv is not None and rsv is not None:
# extract version/subversion
self._nmap_version_number = int(line[rv.start():rv.end()])
self._nmap_subversion_number = int(line[rsv.start()+1:rsv.end()])
break
}
Ⅳ python 分布式进程用的多吗
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。
借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
如果我们新建少量进程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用进程池
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口、进程),可以通过如下调用来解决:
multiprocessing.freeze_support()1
附录(自己的脚本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用进程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加线程到线程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #创建多线程任务
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待线程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break
Ⅵ python如何搭建分布式爬虫呀
爬虫本质上不需要分布式。因为你要爬一个网站通常5-10个线程足够了,再多就是对网站压力测试了。
你只需要将任务分配到不同的机器上,然后各运行各自己的,结果合并一下就可以。 这个与nutch人map, rese也没有什么差别。只是手工分,手工合并。当然也可以用脚本分,脚本合并,脚本远程启动。有一个远程控制模块,似乎叫rpy。很简单,很容易上手。可以远程控制一个模块。
数据库用postgresql不是很好。因为爬行结果放在关系型数据库里太吃力。特别是网页内容。通常是URL放在redis里。 内容放在文件系统里,你可以用hadoop+hdfs+thrift方案放在hadoop里。
如果使用了hadoop,就干脆模仿nutch的流程,把python脚本也交给hadoop去管理好了。
至于控制与通信这个都让hadoop来处理好了。
当然我个人觉着rpy方式更简单。 里面控制与通信都是现成的。10分钟就学会了。
还是回到原来的说法,大部分情况下,单机多线程跑爬虫足够用了。 不需要分布式。而且效率甚至比分布式更高。
Ⅶ 哪些分布式文件系统是由Python编写的呢
我知道分布式文件系统完全用Python 写的只有openstack 的swift。
其他还有一些不知名的分布式文件系统用python 写的如:
NCFS(基于多个云存储的分布式文件系统)
一般考虑性能都不会采用python 作为分布式文件系统的开发语言
Ⅷ grpc使用python时,想做分布式部署,实现负载平衡,求详细方案
Ⅸ 如何设计一个python分布式爬虫系统
你都没想明白为什么要分布式
========================
我还是认真答一下吧,爬虫这种东西在大批量抓去时主要有下面几个量变引发质变的挑战:
1. 出口IP数量,主要是考虑防止被封禁,带宽反而不是大问题,这个问题可以通过搭建NAT出口集群,或者单机多IP的方式实现
2. 本地端口号耗尽,由于爬虫是服务端编程不太常见的主动发起连接的应用,在普通只有一个IP绑定的机器上会受到65535的限制(一般在50000多就会受到限制)
3. 大容量存储的需求,一般都是通过开源或者自己研发的分布式存储系统来实现,像谷歌(GFS)和网络(百灵)都是自研,这里就不展开说了
4. 动态网页的支持,像京东这种网站,内容都是通过类似Facebook的bigpipe一样动态加载的,直接像curl这样抓取看到的页面几乎是空白的,这就要求爬虫能模拟JS的运行,这方面有很多基于v8引擎的开源项目:
CasperJS, a navigation scripting and testing utility for PhantomJS and SlimerJS
PhantomJS | PhantomJS
由于这个需求,爬虫成了CPU密集型的应用了,分布式的需求也就有了
单机爬虫的主要难点在的异步非阻塞网络编程,老生常谈了。先暂时写这么多吧