导航:首页 > 软件资讯 > app留存率在哪里看

app留存率在哪里看

发布时间:2022-05-04 03:53:25

❶ app用户留存率用什么工具分析较准确

用户留存对于互联网产品来讲十分重要,直接体现你的产品体验以及对于用户吸引,现在比较流行的增长方式对于用户留存率也十分看中,如何实现产品的优化就相对重要,AB测试就是不错的一种方式,国内用户可以使用吆喝科技的产品。

❷ 如何获取app的新增用户,活跃用户,启动次数,使用时长等数据

最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题。在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长。
究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃、周活跃、月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师、甚至开发人员就会发现很难去操作。以下我将描述三个活跃的定义、使用方式、分析方法以及注意事项,限于篇幅今天就说说日活跃的分析使用。
日活跃
统计标准
日活跃的统计标准有很多种,在RPG中有日活跃角色数和日活跃账号数。这类游戏由于存在创建角色的问题,所以一般会分成两种统计方式。一般比较多见的是日活跃账号数,可以认为就是日活跃用户数。当然,很多游戏室不存在这样的多角色概念,因此通用日活跃账号数来作为统计的标准为最佳。
当然,还有一种统计标准就是设备的唯一标示,比如MAC,这样统计日活跃设备数量,不过价值相对不大。
定义标准
统计日登录过游戏的账号数,此处要去重。
比如某日有1000个账号登录过游戏,总计登录次数为1600次(因为存在某些账号重复登录游戏),那么该日的日活跃账号数为1000。不要小看这个解释,在实际操作中,经常会出现问题,例如我们在写SQL语句提取数据时就应该加上distinct 进行去重操作:
Select count(distinct passportid) from playerlogintable
如果没有加上distinct 统计的就是所有登录玩家的总计的登录次数,这样就会出现大的问题。
日活跃能分析什么?
单单一天的日活跃其实只能与前一日或者历史同期做一个环比或者同比的分析。但是日活跃的能发挥的作用远远超出你的想象。
核心用户规模
核心用户规模的衡量其实和产品周期结合起来来看,在大部分游戏中,日活跃大概的构成可以分成以下的部分。
其中,新登用户对于日活跃用户的影响是最大的,一般新登占比达到40%,而这个比例其实是可以判断游戏核心用户规模的依据之一。
从上图的构成来看,如果新登用户在后续不断转化稳定的老用户以后,那么老活跃用户的规模是在不断增长的,同时,如果新登用户的注入水平保持不变,这样来看,游戏的核心用户有规模是在增长,并且新登用户所占的日活跃百分比是在下降的;如果新登用户注入水平也在增长,且不断转化为老用户,即核心用户规模也在增长,那么新登用户所占百分比会在一个区间稳定的变化的。
刚才所提到的核心用户规模,之所以使用日活跃用户来衡量,原因在于,以每日作为一个衡量的单位比较客观反映用户的游戏积极性,以日作为统计长度,恰好符合用户游戏的最短的周期性循环。
那么在日常的分析中,我们可以简单计算一个周期内,每日新登用户和活跃用户的关系比例,看一个长期趋势,一定程度上反映了目前核心用户的规模增长情况。
那这里有人会问,怎么看待回流用户的作用呢?
实际上,回流用户对于日活跃用户的贡献比例是极低的,但是该部分的贡献却不能够忽略,因为在重大节日、渠道推广等各种营销手段上线以后,会对于游戏日活跃产生一个很大的贡献值。但是一般而言,该部分的贡献比例比较低。
说了这么多,那么老用户和回流用户的定义究竟是怎样的?这里只给出参考的标准:
回流用户:统计日登录游戏,但是之前7天未登录过游戏的历史用户(所谓历史用户就是非新登用户,历史上登录过游戏的用户)
老活跃用户:如果粗略的计算,可以如下计算:
•日活跃用户数-日新登用户数-日回流用户
当然如果要精确衡量老用户规模,可以给予老用户定义,例如:
统计日登录游戏的用户,在此之前7日内再次登录过游戏(注意此处没有严格区分新登用户的情况,即也把新登用户的次日登录的部分计算为老用户,可按照实际需要提出此部分对于老用户的影响)。
下面我们通过几个曲线来简单说明一下怎么利用DAU分析问题。
首先我们要得到划定时间区段的DAU和DNU的曲线图,如下图:
在该图中,我们DAU和DNU的走势基本上是一致的,DNU对于DAU的影响还是比较大的,但是随着后期波动的减小,我们发现从106天到280 天,两条曲线是呈现缓慢的下滑趋势的,但是这不足以说明问题,仔细观察,我们发现夹在两条曲线之间的面积是逐渐缩小的,而这部分面积就是DAU中除去 DNU的部分,即我们可以认定是老用户的部分,这个面积的缩小,意味着用户的流失加剧,活跃用户的控制不得当,此外,也可能是新用户在短期内留存率不高引起的,那就需要结合留存率来看问题了,这里不讨论。
在发现上述的情况后,我们可以使用DAU-DNU的差值做一条曲线来进行分析这个问题。如下图所示:
可以很明显的看到,这个差值在逐渐走低,也就是说用户的活跃度是在下滑的,这个下滑可以认定是后期渠道导入用户质量不高造成的,也可以是产品本身的用户周期问题造成的。但是断定一点的是,这个时期,需要紧急的拉动用户规模增长,因此,可以看到,随后进行了两次相应的拉动,其规模有所提升。
此外,我们还要看一下新用户所占的比例曲线,如上文所述,基本维持在40%的水平上,但是有一个值得关注的是,当处于一个相对的稳定期时,即使有大范围的推广和拉动新登增长,那么这个比值的变化也不会太剧烈,唯一剧烈的原因就在于,原本游戏的老活跃用户规模就在下滑,流失较多。
当然了,用户的流失、产品的粘性等等都可以通过对DAU不同角度的解析获得相应的信息,这点也是要和其他数据结合来分析的,比如次日留存率,用户流失率、启动次数、登录时长分布等数据,找出来DAU中的虚假用户,例如1-3s用户非常多,那么在正常的网络和设计情况下,这种数据就可能是很多假用户造成的,也就是作弊行为。
再比如的情况,我们可以通过事件管理,区分推广和非推广时期的用户增长对DAU的影响,比如自然增长时期的新登用户对DAU的影响,判断DAU的质量,渠道的质量;或者推广时期的新登用户对DAU的影响情况分析。
如果需要的也可以结合用户的登录习惯,比如登录次数,登录天数等等数据进行忠诚活跃用户的阈值确定,以此来保证DAU的质量。
其实在DAU的背后,隐藏的问题和分析的要素很多,这个也是需要结合自己的业务需要来进行的,这里只是给大家提供一个分析的思路和方式。至于具体的问题,还要结合具体需求进行分析。不过话说回来,DAU的解析离不开细分数据和其他数据的支持,但是也是不一定一直细分进行数据的分析。因为有一些因素不是靠细分数据就一定能够得到的,还要经验积累,有关这部分的分析参见这里。
文章来源:博客园

❸ 什么叫做APP留存率呢谁能给个解答呢

就是当日安装的APP不卸载,存留在手机的几率

❹ 如何利用数据分析提升用户留存率

一、留存的概念和重要性

1、什么是留存?

在互联网行业当中,因为拉新或推广的活动把客户引过来,用户开始访问公司的网站,但是经过一段时间可能就会有一部分客户逐渐流失了。那些留下来的人或者是经常回访我们公司网站的人就称为留存。

现在大家经常会用到所谓的“日活”(日活跃用户量,简称DAU)来监测我们的网站,有的时候会看到我们的“日活”在一段时期内都是逐渐增加的,这是一个非常好的现象。但是如果我们忽略了留存分析的话,这个结果很可能是一个错误。

比如某公司做了很多拉新、推广的活动,用户是带来了很多,但是留下来或经常返回来的客户不一定增长,他们有可能是在减少,只不过是拉新过来的人太多了而掩盖了流失率居高不下的问题,实际上客户的留存是在逐渐降低的。这个时候留存分析就很重要!

2、怎样用图表展示留存状况?

我们提供了留存图和留存表两个模型来分析用户流失与留存问题。

如上图左侧的留存图所示,开始的时候是带来了百分之百的人数,随着第一天结束,留存用户就急剧下降了85%,然后慢慢地降低,直到第13天进入一个平稳的阶段。

再如上图右边留存表,这张表该怎么解读呢?

我们先看一下第二行,时间是1月11日这一天,我们通过各种各样拉新和推广吸引到了6.7K 的客户。但是一天之后就下降了85%,变成15%,两天之后再一次下降10%,到了第七天是比较稳定的状态,达到了6.5%,后面就是缓慢地下降,比较平稳。我们可以看出来客户在第一天的时候就有一个巨大的流失,然后慢慢地达到了一个比较平稳的状态。

3、为什么要进行留存分析?

看完留存分析的概念,不禁思考,我们为什么要做留存呢?留存的分析意义何在?

像SaaS企业,获得一个客户无论在时间上还是在金钱上成本都是非常巨大的,也许要花掉两到三个月的时间才能获得一个客户。

以上面左边的图为例,刚开始这个客户,我们花了6000多美元的成本才把这个客户得到。得到了以后一般情况下客户对咱们这些企业可能就是按照一定的现金流给我们付钱,比如说付500美金,就这样一直地付下去。

这样你就会发现前期成本很高,也许我们只有通过客户使用我们的产品高达一年或者两年的时候我们才能收回成本。如果这个客户在之前就流失掉了,流失掉就意味着咱们的产品亏本了,连本都没有返回。

再来看右边的这张图,这张图讲的是每位客户成本的应收的现金流。第一个月我们得到了这个客户,我们花了6000刀,然后这个客户就每个月给我们付费,比如说每个月付500刀,他要到第13个月的时候我们才能达到所谓的收支平衡,从14个月以后才开始逐渐地赚钱,如果我们的留存没有做好,客户在用了两个月以后就走掉了,那这部分钱我们就流失了。

所以说留存有一个非常重要的意义,客户使用咱们公司的产品,时间越长越好,越长带来的现金流或者利润越高,这就是留存的一个非常核心的意义。

如果我们的留存做得好的话客户就会一直使用我们的产品,一直给我们带来财富。

从上图中我们可以看到两点:第一个就是使用的时间,留在我们产品的时间越长越好;第二个,希望利润越高越好。利润如何越高越好?就是我希望我的留存率越来越高,这样利润的面积也就越来越大。

二、用户留存的三个阶段和重要时间点

1、提升留存曲线的意义

假如现在我们产品的留存度是上图最下面那条绿色的线,纵轴是留存的比例,横轴是时间。一天过后,我们拉新获得的100%用户只留下35%,第7天变成了20%,然后缓慢下降,到了第60天以后达到一个大约10%的效果。

这个效果我们看看能不能通过某些方面的改进,让它逐步提升呢?

假如我们让绿色的留存度的线上升到橙色的线,再上升到红色的线,那么第一天留存率高达到70%,七天留存率也有60%多,到了60天、90天的时候留存率也能高达60%左右。这就是说我们前面通过市场拉新获得的百分之百的人数在经过90天以后有60%的人留下来了。

刚开始的时候看绿色的线我们的90天的留存率是10%,如果通过我们的努力能让它达到60%,这会给我们带来源源不断的财富和现金流的收入。

2、留存的三个阶段

今天通过留存分析的一些方法来给大家一些思路,看看如何通过优化产品的方式来提高我们的留存率。

在讲这个之前我先给大家讲一下我们应该如何去看这张留存的图。

这是一个常见的留存曲线,我把它分成了三个部分:第一部分是振荡期,第二部分是选择期,第三部分是平稳期。

大家会有一个问题,为什么我要分成这三个期呢?

首先在振荡期,我们可以看到拉新过来进入我们公司网站或者是下载APP的人数在前几天剧烈地减少,由100%几天就变成了百分之十几或者更低,这个期叫振荡期,它有自己的特色。

过了振荡期以后就是选择期,为什么我们称它为选择期呢?就是一般情况下客户在这段时间之内对我们的产品有了初步的了解,他开始探索我们公司的产品,看看这个产品有没有满足客户的一些核心需求。如果能满足,顾客很有可能就留下来了;如果没有满足,那客户就要走掉了。

过了选择期就是平稳期,留存率进入一个相对稳定的阶段。

3、留存的重要时点

第一个就是次日留存,就是当天过来第二天的留存有多少。我们可以看出,当天拉新,比如说我们拉了100个人,到了第二天可能只有十几个了,这是次日留存。

第二个是周留存,周留存是一个什么样的概念呢?我们为什么要周留存,这个概念就是说一般情况下客户使用一款产品,如果他进行一个完整的使用的话他的体验周期大约是一周或者是几天,因为比较常见的是周留存,我们就起了一个周留存的名字。

这个可以根据你的业务,如果您公司的产品体验一个完整的体验周期的话比如说是14天或者3天,我们就定3日留存或者14日留存。

三、留存的核心原因

什么样的客户会留下来?

其实这个问题也非常简单,如果我们的产品能够满足客户的核心需求,他能够在我们的产品使用当中发现这个产品的价值,那么他很有可能就会留下来。

如果我们做了很多的拉新、渠道的优化等等,也许会提高一定的留存率,但是这个留存到底能不能留下来,核心的问题还是说我们的产品功能设计能否满足客户的核心需求。如果能满足的话,我们能不能再进一步,我们这个产品的设计能否比较好的、比较快的、比较方便地满足客户的核心需求,这是第二点。

四、留存分析的方法论

下面我给大家讲解一下留存分析的方法论,来更好提升我们在平稳期这段时间的留存量。

假如我们现在可能只有5%,我想把它提高到10%或者是20%更高,就是回到刚才这张图,从一个绿色的线,慢慢地努力提到一个红色的线。

在这里留存分析有两个常见的分析方法,给大家稍微介绍一下,然后在后面的案例的讲解当中慢慢地把这两个方法融进去,给大家讲一讲。

第一个就是获取时间,我们在留存分析的时候可以对获取客户的时间进行分组。比如说这个产品发布了版本2.0或者是3.0,这个时间点我们可以做一个分组,看看用新版本的人的留存表现。

还有一种分组方式就是根据客户的行为进行分组,比如说我们举个例子,有一款音乐的软件,我想知道分享这首歌的人,他们在留存上有什么样的表现,或者对这首歌点赞数大于3次或者5次的人,他们在留存上有什么样的表现。

1、按照获取客户时间进行分析

如上图,是一个新版本音乐APP的留存情况,左边是留存表,右边是留存图。

先看左边的留存表,正如我刚才所说的,按照获取的时间进行了一个分组。举个例子,我们看最下面的10月26日获得的用户,一天后留存率是多少,两天后留存率是多少,三天后留存率是多少。

我们看到右边这个留存表也是这个意思,可以看出来第一天留存率骤降一半,第二天又降了10%,可以看出来前两天客户的留存率下降得很大,然后慢慢地在后期,比如说在第十五六天的时候达到一个比较平稳的阶段。

从这两张图表可以很好告诉我们随着时间的变化,留存在下降。但是如果我们想深度地挖掘哪里出了问题的话这两张表还不够,我们还需要进一步地分析用户行为。

2、按照用户行为进行分析

这时候我们就涉及到了一个新的分析方法,就是根据客户的行为进行分析。

还是以音乐APP为例,如果一个客户在一段时间内点击“喜欢”大于3次,我们看看这一部分人的留存,即上面左边的图。我们可以很明显地看到,咱们这条留存曲线是高于所有用户的蓝色留存曲线的。我们看一下次日留存率,高达82%,而所有用户可能只有50%多。得出结论:点击“喜欢”大于三次的用户留存表现优于所有用户平均值。

这时候咱们再进行更深一步的对比,点击“喜欢”大于等于3次与小于3次的用户留存之间有什么差异?上面右边的图中,红色的线就是喜欢这首歌大于等于3次,蓝色的还是刚才整体的所有用户,在下面是绿色,小于3次的。

可以明显地看出来这三个分群有很大的不同,点击“喜欢”越多的次数留存率就会很高,而点击“喜欢”小于3次的人留存率比所有用户的还要低。

我们看到这两这张图就会想到一个问题,我们有没有一种方法来引导客户,让他点击喜欢呢?

这个时候留存的分析的作用就是说如何促使产品的更新和优化,既然通过数据我发现了点击“喜欢”大于3就会留存率高,那么我们是不是通过这种分析方法来得到一个类似的假设,我们的产品如果通过优化能让客户更早地去点击“喜欢”,那么客户的留存就会多。

当然了这个时候我们会对产品通过一些交互行为的设计、A/B test或者各种各样的方法来使这个产品变得更好一些,更优化一些,不过这个主题比较大,我们先讲到这里。

我们继续往下深入地挖掘。

现在有一个行为是点击“喜欢”大于3次,我们还有些其他的行为,比如说我在一个网站上想加入一个兴趣的社区,比如说我非常喜欢听爵士乐,我就在APP进入爵士乐的社区,比如说我非常喜欢陈奕迅,我就想加入陈奕迅歌迷俱乐部,或者说我想加入其他的一些社区。

在上面左边的留存图中我们就用绿色的线表示当客户加入了一个兴趣社区时他的表现是什么样子。红色的线还有蓝色的线也是刚才说的三条线的对比。

可以看出来,如果这个客户加入了一个兴趣社区,我们也可以看到它的留存率相对整体客户来说是有一个提升的。

我们发现客户加入兴趣社区,点击大于3都会导致留存率的上升,那么我们会不会更深一步想一个问题,如果他既点击“喜欢”大于3次以上,又加入兴趣社区,会有什么样的效果?

当然这时候可能并没有很好的效果,我们并不确定,那我们就做一个实验,把数据抓出来,做上一张图,先看一下是好是坏,即刻分享。

然后我们就做出了上面右边的图,红色的就是我刚才说的,点击“喜欢”大于3次以上并且加入了社区,另外就是它的补集,就是没有小于等于3次或者是没有加入社区的,这时候我们发现这是一个很大的留存方面的差异。

由上图可以很明显地看出来红色要远远地高于蓝色,这时候就会给我们一个想法,如果咱们的产品能够更好地引导这些客户去使用这些功能,那么这些客户就能很好地留下来,留在咱们的产品上。

3、不同群组对产品不同模块使用状况的分析

上面的图叫“如何发现一个对比的点”,功能是分析不同的群组对产品不同模块使用情况。

分群A(平稳期)的客户之所以留下来了,是因为咱们的产品提供的功能满足了他,这些用户我们可以通过一些细节的挖掘,去看他对每一个产品每一项功能的使用情况。

比如某个产品有很多功能,我现在就截取了A/B/C/D/N 5个模块,10代表使用这个模块的频率还有热度的指数的满分,9表示他经常使用这个功能。反映到我们手机上的例子可能就是说他经常使用“喜欢”这个按钮或者是经常用“分享”这个按钮。

从这里可以看出来,如果我们做一个排序的话,分群A在平稳期的这部分用户非常喜欢使用模块A,也非常喜欢使用模块C或者模块D。

这部分群体我们再逆推到之前,他们在前期的时候喜欢使用什么样的功能呢?他们在所谓的振荡期和选择期的时候使用什么样的功能。

我们也是通过数据的分析,把这个数据拿下来,即分群A(振荡期+选择期),我们发现客户很可能非常喜欢模块A或者是功能模块C,例如客户非常喜欢分享一个东西或者喜欢下载一个东西,这个东西就是我们行为分析的一个起止点。

我们可以探索我们是不是先用这两个点来看一看客户在留存上面有没有一个巨大的行为差异,然后我们就会通过这些东西做出一些东西,比如说我点击了“喜欢”大于3次的我就发现留存率高,点击“喜欢”小于等于3次的留存率相对就会比较低。

五、用户留存的案例分析

1、留存图和留存表

下面展示了我们提供的一张留存图和留存表(也称为手枪图),可以方便大家看到新进来的客户们在后续的时间的表现,我们也可以定义起始行为和回访行为这两个功能。

2、起始行为和回访行为

起始行为规定了你想筛选什么样的用户进行留存分析。我们按照最普遍的留存率的概念,将默认的起始行为设置为“新增用户”,即这个用户ID此前未曾出现过,那么就会归为当天的新增用户。除了默认选项外,我们还支持将任意圈选过的标签的浏览或点击行为作为起始行为,在下拉菜单中就可以直接选择。

例如,选择“页面_加入我们”“浏览”为起始行为,那么系统会将一段时间内所有浏览过“加入我们”这个页面的用户都筛选出来,然后再计算他们在这之后是否发生过回访行为。

你希望用户经常地、持续地到你的产品中做什么?这就是回访行为的定义。在默认条件下,回访行为被设置为“任意行为”,即对任何页面的浏览或点击都被认为是留存。与起始行为一样,你可以设置任意标签的浏览或点击行为作为回访行为,在下拉菜单中可以选择。

例如,选择“按钮_加入购物车”“点击”作为回访行为,那么系统会计算:在满足起始行为的用户中,接下来的每一天里有多少人点击了“加入购物车”按钮?他们占起始用户的比例有多少?

3、某O2O企业分析“发红包”案例分析

某个O2O应用,想观察给用户发放红包之后的回购行为趋势。在这个案例中,我们将触发了购买行为的用户定义为留存用户,因为对于这个活动来说,刺激用户的购买是首要目标,那些仅在应用里查看了商品页面的用户,虽然他们回访了,但并没有进行关键行为,因此在这个案例中暂不能成为留存用户。

首先在【起始行为】中选择【红包领取成功页面】【浏览】,然后在【回访行为】中选择【购买成功页面】【浏览】,时间选择红包活动的时间段1月1日至1月14日,点击【提交】。

在这张表中,可以看到第一列“当天”的留存率已经不是100%,这是因为我们设定的起始行为与回访行为不一致而形成的,是正常现象。当天的平均留存率为38.1%,表示每100个领取了红包的用户中,大约38人会在当天就去购买商品花掉红包。

我们还可以根据这张表做进一步的分析:例如,在1天后的留存率中,1月2日领取红包的这批用户转化率非常低,只有2.6%,而1月2日的这批用户的当天转化率也不高。我们可以在【用户分群】功能中将这批用户定义为一个分群A,同时将1月7日领取红包的这批用户定义为分群B(因为1月7日的红包用户当天、次日的留存率都比较高),将这两个分群进一步按照多个维度和指标进行交叉对比,找出他们的行为差异。

❺ 如何跟踪app的留存数据,打开数据

行业数据

行业数据对于一个APP来说,至关重要。了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。这种纵向的对比,会让自己的产品定位、发展方向更加清晰。

评估渠道效果

在国内,获取用户的渠道是非常多的,如微博、微信、运营商商店、操作系统商店、应用商店、手机厂商预装、CPA广告、交叉推广、限时免费等等。看一个APP的数据,首先要知道用户从哪里来,哪里的用户质量最高,这样开发者就会面临一个选择和评估渠道的难问题。但是通过统计分析工具,开发者可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。

用户分析

产品吸引到用户下载和使用之后,首先要知道的就是用户是谁。所以,我们需要详尽地了解到用户的设备终端类型、网络及运营商、地域的分布特征。这些数据可以帮助了解用户的属性,在产品改进以及产品推广中,就可以充分利用这些数据制定精准的策略。

用户行为分析

在关注完用户的属性后,我们还要高度关注用户在应用内的行为,因为这些行为最终决定着产品所能够带来的价值。开发者可以通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。

产品受欢迎程度

在了解了用户的行为之后,我们应该看一下自己的产品是否足够受欢迎,这是一个应用保持生命力的根本。开发者可以从留存用户、用户参与度(使用时长、使用频率、访问页面、使用间隔)等维度评价用户粘度。进行数据对比分析的时候,要充分利用时间控件和渠道控件,可以对比不同时段不同渠道的用户粘度,了解运营推广手段对不同渠道的效果。

❻ appapp用户留存用什么软件进行分析

app用户留存对于互联网产品来讲十分重要,直接体现你的产品体验以及对于用户吸引,现在流行的增长方式对于app用户留存率也十分看中,如何实现产品的优化就相对重要,AB测试就是不错的一种方式,国内用户可以使用吆喝科技的产品。

❼ app的留存率看什么

APP的留存的计算有两个维度,基于设备或账号,基于活跃或新增。对这个计算方式做排列组合,有四种留存的定义:基于设备的活跃留存、基于账号的活跃留存、基于设备的新增留存、基于账号的新增留存。
使用一个统计系统来分析留存率,一定要先搞清楚是哪种口径的留存率。
●?活跃设备第N日留存:某日的活跃设备,在N天后启动了APP;
●?新增设备第N日留存:某日的新增设备,在N天后启动了APP;
●?活跃账号第N日留存:某日的活跃账号,在N天后登陆了APP;
●?新增账号第N日留存:某日的新增账号,在N天后登陆了APP。
查看app留存率可以了解下极光iapp,提供206个行业,200万+app的运营数据

❽ App页面上的数据如何追踪和统计的现成的工具有哪些

1. Android 渠道追踪方法

众所周知 Google Play 无法在中国使用,所以国内 Android 市场被数十家应用商店( 豌豆荚、网络助手、酷市场、360手机助手等等 )占领,Android 渠道追踪主要围绕上述渠道展开。

方法 1:每个渠道打渠道包

具体来说就是开发者为每一个渠道生成一个渠道安装包,不同渠道包用不同的 Channel ID (渠道标识)来标识;当用户下载了 App 之后,运营人员就可以通过渠道标识查看各个渠道的数据。

Android 渠道打包机制:

虽然这样可以统计到不同渠道的来源数据,但是当渠道数量变多、抑或同一渠道在多个平台上做推广的话,打渠道包的做法就捉襟见肘了。

方法 2:使用平台方提供的数据

部分第三方推广平台提供渠道数据,然而只依赖平台方的“一面之词”是很难找到真正的优质渠道。

2. iOS 渠道追踪方法

和 Android 的开放生态不一样,iOS 则是一个完全封闭的系统;除了少部分越狱机器,绝大部分 App 都是从 App Store 中下载。在苹果一家独大以及严格的审核制度下,Android 打包的做法在这里就完全行不通。
为了追踪 iOS 渠道数据,开发者们想出了很多黑科技,下面我介绍一下常见的三种做法。

方法 1:通过 IDFA 追踪渠道

IDFA 的全称是 Identifier for Advertisers ,即广告标识符的含义,这是苹果专门给各广告提供商用来追踪用户而设的标识。

通过 IDFA 追踪渠道:

今日头条作为广告提供商可以获取用户的 IDFA,当你在上面投放的 App 被用户下载激活,你的 App 也可以获取用户的 IDFA。将广告提供商提供的 IDFA 和自己获取的 IDFA 匹配,即可追踪渠道来源。
缺点是 IDFA 只能用于 App 类型的渠道,如果你在网页上投放广告是不支持的;同时,用户可以在iPhone 设置中选择关掉 IDFA 获取权限。

方法 2:通过 Cookie 追踪渠道

iOS 9 里面引入了 SFSafariViewController 类,一方面是用户体验更好了,同时可跨 App 与 Safari 共享 Cookie。

通过 Cookie 追踪渠道:

当用户点击广告链接时,监控服务器可以接收到 Cookie 中含有的渠道信息;用户在 App Store 中下载激活 App,这个时候监控服务器再次收到 Cookie 信息。系统匹配前后两次 Cookie ,即可追踪渠道。
缺点是基于SFSafariViewController 的追踪必须在 iOS 9 及以上版本才有效,而且微信公众号广告、朋友圈广告仍然无法实现追踪。

上述方法可以实现部分平台、部分渠道的追踪监测,然而三大缺点也是显而易见:
(1)割裂了 Android 和 iOS 两个平台的渠道数据,难以整合分析;
(2)Android 投放需要重复打包,效率低下;
(3)iOS 渠道范围限制多,无法大规模推广。

Part 2 | 基于用户设备标记的解决方案

下面我们介绍一种快速、灵活的解决方案 ––– 基于用户设备标识的追踪方法,它可以同时兼容 Android 和 iOS 两个平台、适用于大部分投放渠道。

1. 基于用户设备标记的追踪原理

上面介绍的基于 IDFA 和 SFSafariViewController 的两种方法均受到 iOS 的限制,而用户的设备标记则不受系统的影响。在 GrowingIO【渠道来源】解决方案中,我们将“IP + UserAgent + 设备 ID”组合设置为用户的设备标记。

通过用户设备标记追踪渠道:

用户点击含有 UTM 追踪参数的广告链接后,GrowingIO 服务器检测到用户的设备标记以及 UTM 渠道参数。链接跳转到应用商店( Android 和 iOS 均可以)后,用户下载安装并激活 App,此时 GrowingIO 服务器第二次收到用户的设备标记。
系统匹配前后两次的标记,可以确定用户的渠道来源,同时 UTM 参数含有的详细渠道信息一并呈现。

2. 用户设备标记方法的特点

当然,基于用户设备标记的方法也有一定不足。当小部分用户所处的网络环境前后变化时(如从 WiFi 切换到 4G),此时 IP 前后不一致就会导致匹配失败。
但是相比于前面的 4 种方法,基于用户设备标记的渠道追踪方法显然更有优势:
第一点,打通了 iOS 和 Android 的渠道来源,可以将【操作系统】加入用户属性整合分析;
第二点:避免了 Android 平台重复打渠道包的工作;
第三点:规避了 iOS 原有诸多限制,适用于更加广泛的推广渠道;
第四点:只需修改推广链接中的参数、无需改动安装包,适合大规模、多渠道、敏捷的推广需求。

同时,广告链接中含有的渠道参数( 广告来源、广告媒介、广告名称、广告内容、广告关键字 )可以一同加入用户属性数据中,方便后期对用户数据进行多维度的对比、交叉分析。

Part 3 | App 渠道数据分析两大思路

有了 App 渠道追踪数据后,我们可以将 UTM 的五个参数作为维度,从数量和质量两个思路出发,进行 App 渠道数据分析。

1. 数量:找到获客成本最低的渠道

根据业务需要,我们选取广告来源( utm_source )和广告关键词 ( utm_term ) 两个维度,计算出不同渠道的获客数量并评估获客成本。

某 O2O 类 App 先后在 3 个渠道上进行了 2 次投放,投放内容先后是“美食”和“外卖”。通过 UTM,我们监测到每个渠道、每次投放的 “App 新增用户量”,然后计算出平均获客成本。
从广告来源上看,渠道 1 的平均获客成本最低;从广告关键词上看,“外卖”主题的广告平均获客成本最低。从客单价的角度出发,接下来可以针对性优化投放渠道和投放内容,大幅度降低投放成本、提高拉新效率。

2. 质量:找到获客价值最高的渠道

“App 新增激活用户量”和“获客成本”这两个指标是从数量的角度进行分析,但是数量大、价格低并不一定代表渠道用户质量高。我们还需综合考虑用新用户在接下来的表现,以及新用户所能带来的价值。

方法 1:用户行为数据分析

在这个过程中,我们重点参考用户留存指标,包括次日留存率、三日留存率、七日留存率、三十日留存率等等。

我们按访问来源(utm_source)分析新用户的留存度,发现渠道 2 的三十日留存率高达 14%,而渠道 1 为 8%、渠道 3 为 6%。从留存度上来看,渠道 2 获取的新用户价值显着更高。

方法2:用户价值分析

除了用户行为指标,财务指标也非常具有参考性。按照广告来源(utm_source)我们统计出不同渠道获取到的新用户的财务价值,如新用户在第一个月的月付费率(MPR)和用户平均收益(ARPU)。

通过分析发现,渠道 2 获取的新用户首月付费率(42%)最高,用户平均收益(30 元)也是最高的。虽然渠道 2 的获客成本略高于渠道 1,但是从收益的角度来说,投资渠道 2 显然是一种更加明智的选择。
综合上述指标,该 O2O 类 App 在下个月的市场投放中将资源集中到了渠道 2,同时主打“外卖”主题内容。还是和上个月同样的市场预算,但是新增用户却提高了 150%、新用户留存率提升了 240%,这是一个巨大的增长。

❾ APP运营怎么利用留存率等数据分析用户减少的原因

app每天的用户量都是在不断变化着的,或增加或减少,如果app运营人单独只看每日活跃用户数,是很难发现问题的本质的,所以通常会结合活跃率和整个app的生命周期来看,这里说的活跃率是指活跃用户/总用户,我们通过这个比值可以了解你的用户的整体活跃度,但随着时间周期的加长,用户活跃率总是在逐渐下降的,所以经过一个长生命周期(3个月或半年)的沉淀,用户的活跃率还能稳定保持到5%-10%,则是一个非常好的用户活跃的表现,当然也不能完全套用,得看看是什么产品并根据产品特点来看。
同时留存用户和留存率通常反映了不同时期获得的用户流失的情况,分析这个结果往往是为了找到用户流失的具体原因,具体又分以下几个指标来看:
次日留存:因为都是新用户,所以结合产品的新手引导设计和新用户转化路径来分析用户的流失原因,通过不断的修改和调整来降低用户流失,提升次日留存率,通常这个数字如果达到了40%就表示产品非常优秀了。
app周留存:在这个时间段里,用户通常会经历一个完整的使用和体验周期,如果在这个阶段用户能够留下来,就有可能成为忠诚度较高的用户。
app月留存:通常移动app的迭代周期为2-4周一个版本,所以月留存是能够反映出一个版本的用户留存情况,一个版本的更新,总是会或多或少的影响用户的体验,所以通过比较月留存率能够判断出每个版本更新是否对用户有影响。
app渠道留存:因为渠道来源不一,用户质量也会有差别,所以有必要针对渠道用户进行留存率分析。而且排除用户差别的因素以后,再去比较次日,周留存,可以更准确的判断产品上的问题。
其实只要app运营们能够不断完善自己的应用并不断创新,这个app应用一定会活的长长久久,用户也会越来越多,赚钱当然就不用说了。

❿ 移动应用运营数据中的留存率是怎么计算的

留存率
=新增用户中登录用户数/新增用户数*100%(一般统计周期为天)简单来说就是之前打开过app的用户再次打开此app就被记为留存,之前没有打开过的,现在打开了,那就是新增数据

阅读全文

与app留存率在哪里看相关的资料

热点内容
pdf劈开合并 浏览:15
不能修改的pdf 浏览:740
同城公众源码 浏览:475
一个服务器2个端口怎么映射 浏览:283
java字符串ascii码 浏览:62
台湾云服务器怎么租服务器 浏览:462
旅游手机网站源码 浏览:317
android关联表 浏览:930
安卓导航无声音怎么维修 浏览:322
app怎么装视频 浏览:424
安卓系统下的软件怎么移到桌面 浏览:81
windows拷贝到linux 浏览:757
mdr软件解压和别人不一样 浏览:889
单片机串行通信有什么好处 浏览:326
游戏开发程序员书籍 浏览:849
pdf中图片修改 浏览:275
汇编编译后 浏览:480
php和java整合 浏览:835
js中执行php代码 浏览:447
国产单片机厂商 浏览:63