❶ tcp并发服务器实现eth0功能
大家都知道各类网络服务器程序的编写步骤,并且都知道网络服务器就两大类:循环服务和并发服务。这里附上源代码来个小结吧。
一、 循环服务
循环网络服务器编程实现的步骤是这样的:
建立socket(这里用到socket()函数及函数setsockopt())
|
|
\|/
把socket和IP地址及端口绑定(这里用到bind函数)
|
|
\|/
开始监听(这里用到listen()函数)
|
|
/\
/ \
\ / \
----------------------- | 有连接|
| / \ /
| \ /
| \ /
| |
| 接受新的连接(这里用到accept()函数)
| | /___________________________________________________
| | \ |
| \|/ |
| 从连接里读取数据(这里用到recv()系统函数,当然也可以是read()函数) |
| | |
| | |
| \|/ |
| 返回信息给连接(这里用到send()系统函数,当然也可以是write()函数) |
| | |
| | |
| /\ |
| / \ |
| / \ |
| | 还有数据 |-Y-------------------------------------------------------
| \ /
| \ /
| \ /
|_______________________________|
这种服务器模型是典型循环服务,如果不加上多进程/线程技术,此种服务吞吐量有限,大家都可以看到,如果前一个连接服务数据没有收发完毕后面的连接没办法处理。所以一般有多进程技术,对一个新连接启用一个新进程去处理,而监听socket继续监听。
/
❷ tcp服务器多个连接并发执行怎么实现
线程是相对独立的执行单位,是计算机系统进行调度的最小单位,其切换由操作系统控制,称之为短作业调度。换句话说您没有任何必要去手动调度线程。如果您想要实现的是连接分配的话,请参考您的操作系统的进程间通信和同步文档,一般底层编程都是通过共享存储区,消息队列等方式实现的。如果是高层次的库实现网络通信,请参考库文档,比如C#和java都提供了足够的接口实现此类功能。
❸ 单机如何实现百万并发TCP连接
一开始我无法理解,单机怎么可能实现百万并发连接,因为系统可用端口数只有:65535 - 1024 = 64511,每个TCP连接需要占用一个独立的端口,那最多也只能做到6W多并发连接。然而我忽视了一个很基本的问题,端口号在同一个IP下不能重复,但我们可以给一个网卡绑定多个IP地址,如果单机要主动发起100万并发连接,我们最少需要使用17个IP地址。
TCP服务器监听在指定端口接收客户端连接后,创建一个新的socket用于同客户端进行读写数据,但该socket并不需要也不会绑定一个新的端口,所以对于TCP服务器来说,不存在端口不够用的情况,TCP服务器能够保持多少个并发连接取决于服务器性能、内存大小、带宽大小以及服务器端设置(例如:进程能打开的文件数等)。以100W连接数为例,所需要总内存大小大约为:1,000,000 20K = 20G, 广播一个1KB的消息需要占用的带宽:1,000,000 1K = 1000M,所需打开文件描述符1,000,000个。
对于TCP服务器连接数压力测试来说,瓶颈在客户端,因为每个客户端要连接到TCP服务端需要使用一个本地端口,而对于一个IP地址来说,端口范围就是:0-65536,其中还要一些端口被系统或其他程序使用。所以从一台主机单个IP上发起同TCP服务器的连接数理论最大值为65535,当然我们可以给该主机绑定N个IP地址,同时从多个IP发起连接,所以理论上客户端可以发起的连接数为:IP数*65535,这时客户端的CPU、内存和带宽以及文件句柄资源就是限制。
❹ epoll编程,如何实现高并发服务器开发
首先,我们需要了解epoll编程的概念。epoll是一项对Linux内核进行的轮询,以处理大量的文件描述符和一个增强版的Linux下多路复用IO接口选择/投票。
一个成熟的高性能服务器,epoll相关代码,不到1万分之一。在今天的posix和Unix /BSD/ systemv设计的回顾中,epoll补丁不应该被实现。异步反应器框架应该只有一个简单的、统一的选择器。
5、是不是可以使用epoll技术跟多线程技术配合开发?如何?
6、系统应该怎样开发使用TCP协议。
❺ 并发服务器的实现如何选择多进程,多线程还是IO复用
产生进程的开销要比线程的开销更大。如果你的服务器连接的客户端的数量比较少,那么进程和线程在效率方面的差别感觉并不大。如果数量很大,比如1000,甚至更多,如果你用进程,那么响应完1000+的客户端连接就会变得很慢,因为你要把资源复制1000多份;但是用线程,它们共享同一个进程里的资源,就不需要花那么大的开销去响应客户端的连接。
❻ 如何提高服务器并发能力
有什么方法衡量服务器并发处理能力
1. 吞吐率
吞吐率,单位时间里服务器处理的最大请求数,单位req/s
从服务器角度,实际并发用户数的可以理解为服务器当前维护的代表不同用户的文件描述符总数,也就是并发连接数。服务器一般会限制同时服务的最多用户数,比如apache的MaxClents参数。
这里再深入一下,对于服务器来说,服务器希望支持高吞吐率,对于用户来说,用户只希望等待最少的时间,显然,双方不能满足,所以双方利益的平衡点,就是我们希望的最大并发用户数。
2. 压力测试
有一个原理一定要先搞清楚,假如100个用户同时向服务器分别进行10个请求,与1个用户向服务器连续进行1000次请求,对服务器的压力是一样吗?实际上是不一样的,因对每一个用户,连续发送请求实际上是指发送一个请求并接收到响应数据后再发送下一个请求。这样对于1个用户向服务器连续进行1000次请求, 任何时刻服务器的网卡接收缓冲区中只有1个请求,而对于100个用户同时向服务器分别进行10个请求,服务器的网卡接收缓冲区最多有100个等待处理的请求,显然这时的服务器压力更大。
压力测试前提考虑的条件
并发用户数: 指在某一时刻同时向服务器发送请求的用户总数(HttpWatch)
总请求数
请求资源描述
请求等待时间(用户等待时间)
用户平均请求的等待时间
服务器平均请求处理的时间
硬件环境
压力测试中关心的时间又细分以下2种:
用户平均请求等待时间(这里暂不把数据在网络的传输时间,还有用户PC本地的计算时间计算入内)
服务器平均请求处理时间
用户平均请求等待时间主要用于衡量服务器在一定并发用户数下,单个用户的服务质量;而服务器平均请求处理时间就是吞吐率的倒数,一般来说,用户平均请求等待时间 = 服务器平均请求处理时间 * 并发用户数
怎么提高服务器的并发处理能力
1. 提高CPU并发计算能力
服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计使得多个任务可以轮流使用系统资源,这些资源包括CPU,内存以及I/O. 这里的I/O主要指磁盘I/O, 和网络I/O。
多进程 & 多线程
多执行流的一般实现便是进程,多进程的好处可以对CPU时间的轮流使用,对CPU计算和IO操作重叠利用。这里的IO主要是指磁盘IO和网络IO,相对CPU而言,它们慢的可怜。
而实际上,大多数进程的时间主要消耗在I/O操作上。现代计算机的DMA技术可以让CPU不参与I/O操作的全过程,比如进程通过系统调用,使得CPU向网卡或者磁盘等I/O设备发出指令,然后进程被挂起,释放出CPU资源,等待I/O设备完成工作后通过中断来通知进程重新就绪。对于单任务而言,CPU大部分时间空闲,这时候多进程的作用尤为重要。
多进程不仅能够提高CPU的并发度。其优越性还体现在独立的内存地址空间和生命周期所带来的稳定性和健壮性,其中一个进程崩溃不会影响到另一个进程。
但是进程也有如下缺点:
fork()系统调用开销很大: prefork
进程间调度和上下文切换成本: 减少进程数量
庞大的内存重复:共享内存
IPC编程相对比较麻烦
❼ 什么是并发通信服务器
不同于顺序服务器, 并发服务器 就要能在一个时间为多个客户端提供服务。 例如,一个 聊天服务器 可能服务一个特定的客户端数小时 不同于顺序服务器, 并发服务器 就要能在一个时间为多个客户端提供服务。 例如,一个 聊天服务器 可能服务一个特定的客户端数小时 ──在停止为这个客户端服务之前服务器不能等待, 除非是在等待一下个客户端到来之前的间隙才能等待。── 在停止为这个客户端服务之前服务器不能等待, 除非是在等待一下个客户端到来之前的间隙才能等待。 http:/ /cnsnap.cn.freebsd.org/doc/zh_ CN.GB2312/books/developers- handbook/sockets-concurrent- servers.html
❽ 实现并发服务器,有哪几种基于线程方式的实现模式,各有什么优劣
在java5以前实现多线程有两种方法(继承Thread类和实现Runnable接口)
它们分别为:
使用new Thread()和new Thread(Runnable)形式
第一种直接调用thread的run方法,所以,往往使用Thread子类,即new SubThread()。
第二种调用
Runnable的run方法。
第一种:
new Thread(){}.start();这表示调用Thread子类对象的run方法,new Thread(){}表示一个Thread的匿名子类的实例对象,子类加上run方法后的代码如下:
new Thread(){
public void run(){
}
}.start();
第二种:
new Thread(
new Runnable(){}
).start();
这表示调用Thread对象接受的Runnable对象的run方法,new Runnable(){}表示一个Runnable的匿名子类的实例对象,
runnable的子类加上run方法后的代码如下:
new Thread(new Runnable(){
public void run(){
}
}
).start();