⑴ linux内核能修改吗
能的,她是是开放源代码形式的
有一本linux内核的书,你可以买来参考一下。
linux内核内容比较大,建议你先选定一个方向阅读。
⑵ 怎么重新编译linux服务器内核
make
config首先配置内核,生成内核配置文件,如果是服务器上的,建议使用编辑好的内核配置文件,自己在服务器上配置比较麻烦;
make再根据生成的配置文件进行编译;
找到新的内核就可以使用
⑶ linux 内核参数优化
一、Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现。
命令格式:
sysctl [-n] [-e] -w variable=value
sysctl [-n] [-e] -p (default /etc/sysctl.conf)
sysctl [-n] [-e] –a
常用参数的意义:
-w 临时改变某个指定参数的值,如
# sysctl -w net.ipv4.ip_forward=1
-a 显示所有的系统参数
-p从指定的文件加载系统参数,默认从/etc/sysctl.conf 文件中加载,如:
以上两种方法都可能立即开启路由功能,但如果系统重启,或执行了
# service network restart
命令,所设置的值即会丢失,如果想永久保留配置,可以修改/etc/sysctl.conf文件,将 net.ipv4.ip_forward=0改为net.ipv4.ip_forward=1
二、linux内核参数调整:linux 内核参数调整有两种方式
方法一:修改/proc下内核参数文件内容,不能使用编辑器来修改内核参数文件,理由是由于内核随时可能更改这些文件中的任意一个,另外,这些内核参数文件都是虚拟文件,实际中不存在,因此不能使用编辑器进行编辑,而是使用echo命令,然后从命令行将输出重定向至 /proc 下所选定的文件中。如:将 timeout_timewait 参数设置为30秒:
参数修改后立即生效,但是重启系统后,该参数又恢复成默认值。因此,想永久更改内核参数,需要修改/etc/sysctl.conf文件
方法二.修改/etc/sysctl.conf文件。检查sysctl.conf文件,如果已经包含需要修改的参数,则修改该参数的值,如果没有需要修改的参数,在sysctl.conf文件中添加参数。如:
net.ipv4.tcp_fin_timeout=30
保存退出后,可以重启机器使参数生效,如果想使参数马上生效,也可以执行如下命令:
三、sysctl.conf 文件中参数设置及说明
proc/sys/net/core/wmem_max
最大socket写buffer,可参考的优化值:873200
/proc/sys/net/core/rmem_max
最大socket读buffer,可参考的优化值:873200
/proc/sys/net/ipv4/tcp_wmem
TCP写buffer,可参考的优化值: 8192 436600 873200
/proc/sys/net/ipv4/tcp_rmem
TCP读buffer,可参考的优化值: 32768 436600 873200
/proc/sys/net/ipv4/tcp_mem
同样有3个值,意思是:
net.ipv4.tcp_mem[0]:低于此值,TCP没有内存压力.
net.ipv4.tcp_mem[1]:在此值下,进入内存压力阶段.
net.ipv4.tcp_mem[2]:高于此值,TCP拒绝分配socket.
上述内存单位是页,而不是字节.可参考的优化值是:786432 1048576 1572864
/proc/sys/net/core/netdev_max_backlog
进入包的最大设备队列.默认是300,对重负载服务器而言,该值太低,可调整到1000
/proc/sys/net/core/somaxconn
listen()的默认参数,挂起请求的最大数量.默认是128.对繁忙的服务器,增加该值有助于网络性能.可调整到256.
/proc/sys/net/core/optmem_max
socket buffer的最大初始化值,默认10K
/proc/sys/net/ipv4/tcp_max_syn_backlog
进入SYN包的最大请求队列.默认1024.对重负载服务器,可调整到2048
/proc/sys/net/ipv4/tcp_retries2
TCP失败重传次数,默认值15,意味着重传15次才彻底放弃.可减少到5,尽早释放内核资源.
/proc/sys/net/ipv4/tcp_keepalive_time
/proc/sys/net/ipv4/tcp_keepalive_intvl
/proc/sys/net/ipv4/tcp_keepalive_probes
这3个参数与TCP KeepAlive有关.默认值是:
tcp_keepalive_time = 7200 seconds (2 hours)
tcp_keepalive_probes = 9
tcp_keepalive_intvl = 75 seconds
意思是如果某个TCP连接在idle 2个小时后,内核才发起probe.如果probe 9次(每次75秒)不成功,内核才彻底放弃,认为该连接已失效.对服务器而言,显然上述值太大. 可调整到:
/proc/sys/net/ipv4/tcp_keepalive_time 1800
/proc/sys/net/ipv4/tcp_keepalive_intvl 30
/proc/sys/net/ipv4/tcp_keepalive_probes 3
/proc/sys/net/ipv4/ip_local_port_range
指定端口范围的一个配置,默认是32768 61000,已够大.
net.ipv4.tcp_syncookies = 1
表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
net.ipv4.tcp_tw_reuse = 1
表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
net.ipv4.tcp_tw_recycle = 1
表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
net.ipv4.tcp_fin_timeout = 30
表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间。
net.ipv4.tcp_keepalive_time = 1200
表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为20分钟。
net.ipv4.ip_local_port_range = 1024 65000
表示用于向外连接的端口范围。缺省情况下很小:32768到61000,改为1024到65000。
net.ipv4.tcp_max_syn_backlog = 8192
表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
net.ipv4.tcp_max_tw_buckets = 5000
表示系统同时保持TIME_WAIT套接字的最大数量,如果超过这个数字,TIME_WAIT套接字将立刻被清除并打印警告信息。默认为 180000,改为 5000。对于Apache、Nginx等服务器,上几行的参数可以很好地减少TIME_WAIT套接字数量,但是对于Squid,效果却不大。此项参数可以控制TIME_WAIT套接字的最大数量,避免Squid服务器被大量的TIME_WAIT套接字拖死。
Linux上的NAT与iptables
谈起Linux上的NAT,大多数人会跟你提到iptables。原因是因为iptables是目前在linux上实现NAT的一个非常好的接口。它通过和内核级直接操作网络包,效率和稳定性都非常高。这里简单列举一些NAT相关的iptables实例命令,可能对于大多数实现有多帮助。
这里说明一下,为了节省篇幅,这里把准备工作的命令略去了,仅仅列出核心步骤命令,所以如果你单单执行这些没有实现功能的话,很可能由于准备工作没有做好。如果你对整个命令细节感兴趣的话,可以直接访问我的《如何让你的Linux网关更强大》系列文章,其中对于各个脚本有详细的说明和描述。
EXTERNAL="eth0"
INTERNAL="eth1"
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -o $EXTERNAL -j MASQUERADE
LOCAL_EX_IP=11.22.33.44 #设定网关的外网卡ip,对于多ip情况,参考《如何让你的Linux网关更强大》系列文章
LOCAL_IN_IP=192.168.1.1 #设定网关的内网卡ip
INTERNAL="eth1" #设定内网卡
echo 1 > /proc/sys/net/ipv4/ip_forward
modprobe ip_conntrack_ftp
modprobe ip_nat_ftp
iptables -t nat -A PREROUTING -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10
iptables -t nat -A POSTROUTING -d 192.168.1.10 -p tcp --dport 80 -j SNAT --to $LOCAL_IN_IP
iptables -A FORWARD -o $INTERNAL -d 192.168.1.10 -p tcp --dport 80 -j ACCEPT
iptables -t nat -A OUTPUT -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10
获取系统中的NAT信息和诊断错误
了解/proc目录的意义
在Linux系统中,/proc是一个特殊的目录,proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。它包含当前系统的一些参数(variables)和状态(status)情况。它以文件系统的方式为访问系统内核数据的操作提供接口
通过/proc可以了解到系统当前的一些重要信息,包括磁盘使用情况,内存使用状况,硬件信息,网络使用情况等等,很多系统监控工具(如HotSaNIC)都通过/proc目录获取系统数据。
另一方面通过直接操作/proc中的参数可以实现系统内核参数的调节,比如是否允许ip转发,syn-cookie是否打开,tcp超时时间等。
获得参数的方式:
第一种:cat /proc/xxx/xxx,如 cat /proc/sys/net/ipv4/conf/all/rp_filter
第二种:sysctl xxx.xxx.xxx,如 sysctl net.ipv4.conf.all.rp_filter
改变参数的方式:
第一种:echo value > /proc/xxx/xxx,如 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
第二种:sysctl [-w] variable=value,如 sysctl [-w] net.ipv4.conf.all.rp_filter=1
以上设定系统参数的方式只对当前系统有效,重起系统就没了,想要保存下来,需要写入/etc/sysctl.conf文件中
通过执行 man 5 proc可以获得一些关于proc目录的介绍
查看系统中的NAT情况
和NAT相关的系统变量
/proc/slabinfo:内核缓存使用情况统计信息(Kernel slab allocator statistics)
/proc/sys/net/ipv4/ip_conntrack_max:系统支持的最大ipv4连接数,默认65536(事实上这也是理论最大值)
/proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established 已建立的tcp连接的超时时间,默认432000,也就是5天
和NAT相关的状态值
/proc/net/ip_conntrack:当前的前被跟踪的连接状况,nat翻译表就在这里体现(对于一个网关为主要功能的Linux主机,里面大部分信息是NAT翻译表)
/proc/sys/net/ipv4/ip_local_port_range:本地开放端口范围,这个范围同样会间接限制NAT表规模
cat /proc/sys/net/ipv4/ip_conntrack_max
cat /proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established
cat /proc/net/ip_conntrack
cat /proc/sys/net/ipv4/ip_local_port_range
wc -l /proc/net/ip_conntrack
grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 2;}'
grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 3;}'
cat /proc/net/ip_conntrack | cut -d ' ' -f 10 | cut -d '=' -f 2 | sort | uniq -c | sort -nr | head -n 10
cat /proc/net/ip_conntrack | perl -pe s/^(.*?)src/src/g | cut -d ' ' -f1 | cut -d '=' -f2 | sort | uniq -c | sort -nr | head -n 10
⑷ OS内核参数和JVM参数的调整
OS内核参数调整
vm.overcommit_memory 内存分配策略:可选值:0,1,2
0:表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。
1:表示内核允许分配所有的物理内存,而不管当前的内存状态如何。
2: 表示内核允许分配超过所有物理内存和交换空间总和的内存。
一般需要将这个参数的值调整为1
可以用如下命令修改: echo 'vm.overcommit_memory=1'>> /etc/sysctl.conf
vm.max_map_count 文件句柄数
这个参数的值会影响中间件系统可以开启的线程的数量。
如果这个参数过小,有的时候可能会导致有些中间件无法开启足够的线程,进而导致报错,甚至中间件系统挂掉。
可以用如下命令修改: echo 'vm.max map_ count=655360' >> /etc/sysctl.conf.
vm.swappiness 控制换出运行时内存的相对权重
os会把一部分磁盘空间作为swap区域,然后如果有的进程现在可能不太活跃,就会被操作系统把进程调整为睡眠状态,把进程中的数据放入磁盘上的swap区域,然后这个进程把原来占用的内存空间腾出来,交给其他活跃运行的进程来使用。
如果这个参数的值设置为0,意思就是尽量别把任何一个进程放到磁盘swap区域去,尽量大家都用物理内存。
如果这个参数的值是100,那么意思就是尽量把一些进程给放到磁盘swap区域去,内存腾出来给活跃的进程使用。
默认这个参数的值是60,有点偏高了,可能会导致我们的中间件运行不活跃的时候被迫腾出内存空间然后放磁盘swap区域去。
因此通常在生产环境建议把这个参数调整小-些,比如设置为10,尽量用物理内存,别放磁盘swap区域去。
可以用如下命令修改: echo 'vm.swappiness=10' >> /etc/sysctl.conf。
ulimit
这个是用来控制inux上的最大文件链接数的,默认值可能是1024, 一般肯定是不够的,因为你在大量频繁的读写磁盘文件的时候,或者是进行网络通信的时候,都会跟这个参数有关系对于一个中间件系统而言肯定是不能使用默认值的,如果你采用默认值,很可能在线上会出现如下错误: error: too many open files。
因此通常建议用如下命令修改这个值: echo 'ulimit -n 1000000' >> /etc/profile.
总结:
实大家综合思考一下这几个参数, 会发现到最后要调整的东西,无非都是跟磁盘文件IO、网络通信、内存管理、线程数量有关系的,因为我们的中间件系统在运行的时候无非就是跟这些打交道。
●中间件系统肯定要开启大量的线程(跟vm.max_map_count有关)
●而且要进行大量的网络通信和磁盘IO (跟ulimit有关)
●然后大量的使用内存(跟vm.swappiness和vm.overcommit_memory有关)
所以对OS内核参数的调整,往往也就是围绕跟中间件 系统运行最相关的一东西。
JVM参数调整
-server :这个参数就是说用服务器模式启动,这个没什么可说的,现在一般都是如此。
-Xms8g -Xmx8g -Xmn4g :这个就是很关键的一块参数了,也是重点需要调整的,就是默认的堆大小是8g内存,新生代是4g内存,但是我们的高配物理机是48g内存的,所以这里完全可以给他们翻几倍,比如给堆内存20g,中新生代给10g,甚至可更多-些,当然要留一些内存给操作系统来用。
-XX:+UseG1GC -XX:G1HeapRegionSize=16m :这几个参数也是至关重要的,这是选用了G1垃圾回收器来做分代回收,对新生代和老年代都是用G1来回收这里把G1的region大小设置为了16m,这个因为机器内存比较多,所以region大小可以调大-些给到16m, 不然用2m的region, 会
导致region数量过多的。
-XX:G1 ReservePercent=25 :这个参数是说,在G1管理的老年代里预留25%的空闲内存,保证新生代对象晋升到老年代的时候有足够空间,避免老年代内存都满了,新生代有对象要进入老年代没有充足内存了默认值是10%,略微偏少,这里RocketMQ给调大了一些。
-XX:=30 :这个参数是说,当堆内存的使用率达到30%之后就会自动启动G1的并发垃圾回收,开始尝试回收一些垃圾对象,默认值是45%,这里调低了一些,也就是提高了GC的频率,但是避免了垃圾对象过多, 一次垃圾回收耗时过长的问题。
-XX:SoftRefLRUPolicyMSPerMB=0 :这个参数不要设置为0,避免频繁回收-些软引|用的Class对象,这里可以调整为比如1000。
-verbose:gc -Xloggc:/dev/shm/mq_ gc _%p.log -XX:+ PrintGCDetails -XX: + PrintGCDateStamps -XX: + PrintGCApplicationStoppedTime -XX:+ PrintAdaptiveSizePolicy -XX:+UseGCLogFileRotation -
XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=30m :这一堆参数都是控制GC日志打印输出的, 确定了gc日志文件的地址,要打印哪些详细信息,然后控制每个gc日志文件的大小是30m,最多保留5个gc日志文件。
-XX:-OmitStackTraceInFastThrow :这个参数是说,有时候JVM会抛弃-些异常堆栈信息, 因此这个参数设置之后,就是禁用这个特性,要把完整的异常堆栈信息打印出来。
-XX:+ AlwaysPreTouch :这个参数的意思是我们刚开始指定JVM用多少内存,不会真正分配给他,会在实际需要使用的时候再分配给他。
所以使用这个参数之后,就是强制让VM启动的时候直接分配我们指定的内存,不要等到使用内存的时候再分配。
-XX:MaxDirectMemorySize= 15g :这是说RocketMQ里大用了NIO中的direct buffer,这里限定了direct buffer最多申请多少,如果你机器内存比较大,可以适当调大这个值。
-XX:-UseLargePages -XX:-UseBiasedLocking :这两个参数的意思是禁用大内存页和偏向锁。
RocketMQ核心参数调整
sendMessageThreadPoolNums
RocketMQ内部用来发送消息的线程池的线程数量,默认是16。这个参数可以根据你的机器的CPU核数进行适当增加。
⑸ 服务器TIME_WAIT和CLOSE_WAIT详解和解决办法
在日常的服务器维护中,会经常用到如下命令。
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'
它会显示例如下面的信息:
TIME_WAIT 689
CLOSE_WAIT 2
FIN_WAIT1 1
ESTABLISHED 291
SYN_RECV 2
LAST_ACK 1
常用的三个状态是:ESTABLISHED表示正在通信 、TIME_WAIT表示主动关闭、CLOSE_WAIT表示被动关闭。
如果服务器出现了异常,很大的可能是出现了以下两种情况:
我们也都知道Linux系统中分给每个用户的文件句柄数是有限的,而TIME_WAIT和CLOSE_WAIT这两种状态如果一直被保持,那么意味着对应数目的通道(此处应理解为socket,一般一个socket会占用服务器端一个端口,服务器端的端口最大数是65535)一直被占用,一旦达到了上限,则新的请求就无法被处理,接着就是大量Too Many Open Files异常,然后tomcat、nginx、apache崩溃。。。
下面来讨论这两种状态的处理方法,网络上也有很多资料把这两种情况混为一谈,认为优化内核参数就可以解决,其实这是不恰当的。优化内核参数在一定程度上能解决time_wait过多的问题,但是应对close_wait还得从应用程序本身出发。
这种情况比较常见,一般会出现在爬虫服务器和web服务器(如果没做内核参数优化的话)上,那么这种问题是怎么产生的呢?
从上图可以看出time_wait是主动关闭连接的一方保持的状态,对于爬虫服务器来说它自身就是客户端,在完成一个爬取任务后就会发起主动关闭连接,从而进入time_wait状态,然后保持这个状态2MSL时间之后,彻底关闭回收资源。这里为什么会保持资源2MSL时间呢?这也是TCP/IP设计者规定的。
TCP要保证在所有可能的情况下使得所有的数据都能够被正确送达。当你关闭一个socket时,主动关闭一端的socket将进入TIME_WAIT状 态,而被动关闭一方则转入CLOSED状态,这的确能够保证所有的数据都被传输。当一个socket关闭的时候,是通过两端四次握手完成的,当一端调用 close()时,就说明本端没有数据要发送了。这好似看来在握手完成以后,socket就都可以处于初始的CLOSED状态了,其实不然。原因是这样安 排状态有两个问题, 首先,我们没有任何机制保证最后的一个ACK能够正常传输,第二,网络上仍然有可能有残余的数据包(wandering plicates),我们也必须能够正常处理。
TIMEWAIT就是为了解决这两个问题而生的。
再引用网络中的一段话:
time_wait问题可以通过调整内核参数和适当的设置web服务器的keep-Alive值来解决。因为time_wait是自己可控的,要么就是对方连接的异常,要么就是自己没有快速的回收资源,总之不是由于自己程序错误引起的。但是close_wait就不一样了,从上图中我们可以看到服务器保持大量的close_wait只有一种情况,那就是对方发送一个FIN后,程序自己这边没有进一步发送ACK以确认。换句话说就是在对方关闭连接后,程序里没有检测到,或者程序里本身就已经忘了这个时候需要关闭连接,于是这个资源就一直被程序占用着。这个时候快速的解决方法是:
注:
直到写这篇文章的时候我才完全弄明白之前工作中遇到的一个问题。程序员写了爬虫(php)运行在采集服务器A上,程序去B服务器上采集资源,但是A服务器很快就发现出现了大量的close_wait状态的连接。后来手动检查才发现这些处于close_wait状态的请求结果都是404,那就说明B服务器上没有要请求的资源。
下面引用网友分析的结论:
服 务器A是一台爬虫服务器,它使用简单的HttpClient去请求资源服务器B上面的apache获取文件资源,正常情况下,如果请求成功,那么在抓取完 资源后,服务器A会主动发出关闭连接的请求,这个时候就是主动关闭连接,服务器A的连接状态我们可以看到是TIME_WAIT。如果一旦发生异常呢?假设 请求的资源服务器B上并不存在,那么这个时候就会由服务器B发出关闭连接的请求,服务器A就是被动的关闭了连接,如果服务器A被动关闭连接之后程序员忘了 让HttpClient释放连接,那就会造成CLOSE_WAIT的状态了。
⑹ 戴尔服务器怎么调风扇转速,bios和网上的不一样
1、进入BIOS下的POWER,将CPUFAN Mode Setting设置为AUTO,重起。 先将风扇设置为自动模式,开机后查看转速与声音,如果可以接受,最好是在这中模式下。如果不行,那么继续。
2、在CPUFAN Mode Setting设置manual mode ,cpufan 设置为100-150之间(默认250),这样风扇的转速就下降到1800--2400之间,噪音会小得多了,但是此时风扇并不是智能调节转速的,即转速是一定值!
3、设置智能调速,CPUFAN Target Temp valun(CPU风扇模式设置)--40 CPUFAN Startup value(CPU风扇的启动数)---40,就是CPU温度达到40°后开始启动智能调速
4、 CPUFAN STOP value(CPU风扇停止数)---35,即CPU温度到35°后停止调速,并随之降速!注意:在风扇的整个调整过程中需要检测CPU温度,如果出现过高或死机,要立刻停止将风扇修改为原先的默认设置使用,如果是这样说明你的风扇功率小不能降低转速需要另外购买散热器
⑺ 安装了一台Linux服务器,想自己编译内核,一步一步做下来,
一般情况下
initrd这个文件在台式机上不是必须的,但是在有SCSI设备的服务器上却是必须的。有可能因为编译内核的时候没有产生initrd那个文件,所以会有上面的错误提示。用户可以使用mkinitrd命令来生成一个initrd.img文件,然后加入GRUB,重启试一试更多内容请查看《Linux就该这么学》。
⑻ 不能上网的内网Linux服务器怎么升级到指定的内核版本
下载需要更新的内核版本安装包, 解压后进行编译安装
⑼ 一般优化linux的内核,需要优化什么参数
方法只对拥有大量TIME_WAIT状态的连接导致系统资源消耗有效,如果不是这种情况下,效果可能不明显。可以使用netstat命令去查TIME_WAIT状态的连接状态,输入下面的组合命令,查看当前TCP连接的状态和对应的连接数量:
#netstat -n | awk ‘/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}’
这个命令会输出类似下面的结果:
LAST_ACK 16
SYN_RECV 348
ESTABLISHED 70
FIN_WAIT1 229
FIN_WAIT2 30
CLOSING 33
TIME_WAIT 18098
我们只用关心TIME_WAIT的个数,在这里可以看到,有18000多个TIME_WAIT,这样就占用了18000多个端口。要知道端口的数量只有65535个,占用一个少一个,会严重的影响到后继的新连接。这种情况下,我们就有必要调整下Linux的TCP内核参数,让系统更快的释放TIME_WAIT连接。
用vim打开配置文件:#vim /etc/sysctl.conf
在这个文件中,加入下面的几行内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30
输入下面的命令,让内核参数生效:#sysctl -p
简单的说明上面的参数的含义:
net.ipv4.tcp_syncookies = 1
#表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
net.ipv4.tcp_tw_reuse = 1
#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
net.ipv4.tcp_tw_recycle = 1
#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭;
net.ipv4.tcp_fin_timeout
#修改系统默认的 TIMEOUT 时间。
在经过这样的调整之后,除了会进一步提升服务器的负载能力之外,还能够防御小流量程度的DoS、CC和SYN攻击。
此外,如果你的连接数本身就很多,我们可以再优化一下TCP的可使用端口范围,进一步提升服务器的并发能力。依然是往上面的参数文件中,加入下面这些配置:
net.ipv4.tcp_keepalive_time = 1200
net.ipv4.ip_local_port_range = 10000 65000
net.ipv4.tcp_max_syn_backlog = 8192
net.ipv4.tcp_max_tw_buckets = 5000
#这几个参数,建议只在流量非常大的服务器上开启,会有显着的效果。一般的流量小的服务器上,没有必要去设置这几个参数。
net.ipv4.tcp_keepalive_time = 1200
#表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为20分钟。
net.ipv4.ip_local_port_range = 10000 65000
#表示用于向外连接的端口范围。缺省情况下很小:32768到61000,改为10000到65000。(注意:这里不要将最低值设的太低,否则可能会占用掉正常的端口!)
net.ipv4.tcp_max_syn_backlog = 8192
#表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
net.ipv4.tcp_max_tw_buckets = 6000
#表示系统同时保持TIME_WAIT的最大数量,如果超过这个数字,TIME_WAIT将立刻被清除并打印警告信息。默 认为180000,改为6000。对于Apache、Nginx等服务器,上几行的参数可以很好地减少TIME_WAIT套接字数量,但是对于Squid,效果却不大。此项参数可以控制TIME_WAIT的最大数量,避免Squid服务器被大量的TIME_WAIT拖死。
内核其他TCP参数说明:
net.ipv4.tcp_max_syn_backlog = 65536
#记录的那些尚未收到客户端确认信息的连接请求的最大值。对于有128M内存的系统而言,缺省值是1024,小内存的系统则是128。
net.core.netdev_max_backlog = 32768
#每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。
net.core.somaxconn = 32768
#web应用中listen函数的backlog默认会给我们内核参数的net.core.somaxconn限制到128,而nginx定义的NGX_LISTEN_BACKLOG默认为511,所以有必要调整这个值。
net.core.wmem_default = 8388608
net.core.rmem_default = 8388608
net.core.rmem_max = 16777216 #最大socket读buffer,可参考的优化值:873200
net.core.wmem_max = 16777216 #最大socket写buffer,可参考的优化值:873200
net.ipv4.tcp_timestsmps = 0
#时间戳可以避免序列号的卷绕。一个1Gbps的链路肯定会遇到以前用过的序列号。时间戳能够让内核接受这种“异常”的数据包。这里需要将其关掉。
net.ipv4.tcp_synack_retries = 2
#为了打开对端的连接,内核需要发送一个SYN并附带一个回应前面一个SYN的ACK。也就是所谓三次握手中的第二次握手。这个设置决定了内核放弃连接之前发送SYN+ACK包的数量。
net.ipv4.tcp_syn_retries = 2
#在内核放弃建立连接之前发送SYN包的数量。
#net.ipv4.tcp_tw_len = 1
net.ipv4.tcp_tw_reuse = 1
# 开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接。
net.ipv4.tcp_wmem = 8192 436600 873200
# TCP写buffer,可参考的优化值: 8192 436600 873200
net.ipv4.tcp_rmem = 32768 436600 873200
# TCP读buffer,可参考的优化值: 32768 436600 873200
net.ipv4.tcp_mem = 94500000 91500000 92700000
# 同样有3个值,意思是:
net.ipv4.tcp_mem[0]:低于此值,TCP没有内存压力。
net.ipv4.tcp_mem[1]:在此值下,进入内存压力阶段。
net.ipv4.tcp_mem[2]:高于此值,TCP拒绝分配socket。
上述内存单位是页,而不是字节。可参考的优化值是:786432 1048576 1572864
net.ipv4.tcp_max_orphans = 3276800
#系统中最多有多少个TCP套接字不被关联到任何一个用户文件句柄上。
如果超过这个数字,连接将即刻被复位并打印出警告信息。
这个限制仅仅是为了防止简单的DoS攻击,不能过分依靠它或者人为地减小这个值,
更应该增加这个值(如果增加了内存之后)。
net.ipv4.tcp_fin_timeout = 30
#如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间。对端可以出错并永远不关闭连接,甚至意外当机。缺省值是60秒。2.2 内核的通常值是180秒,你可以按这个设置,但要记住的是,即使你的机器是一个轻载的WEB服务器,也有因为大量的死套接字而内存溢出的风险,FIN- WAIT-2的危险性比FIN-WAIT-1要小,因为它最多只能吃掉1.5K内存,但是它们的生存期长些。