导航:首页 > 配服务器 > docker打包到云服务器

docker打包到云服务器

发布时间:2023-05-17 23:47:29

A. 用eclipse开发web项目如何打包docker的tar部署给linux服务器

这个需要了解一下dockerfile的制作,制作自己的镜像,并不是直接使用工具之类的进行打包,需要编写构建。在dockerfile构建好之后,再编写docker-compose的yaml文件,前提还是得有自己的镜像仓库。
将自己做好的docker镜像push到私有镜像仓库(确保镜像是正确且可用的),在新的环境里,只需要搭建一下docker环境,直接使用docker-compose up docker-compose的yaml文件,即可直接搭建好你的项目。
再向上延伸一点的话,就可以了解了解K8S。

B. docker 打包镜像命令

title: docker 打包镜像命令
date: 2020/02/20 14:52

1、在 docker 中添加 harbor(或者其他私服)的地址

2、登录远程仓库

3、拉取私服的镜像到本地仓库

4、查看镜像 id,并进行打包

5、 到需要部署的机器上,载入镜像

C. Docker+ Kubernetes已成为云计算的主流(二十六)

最近正在抽时间编写k8s的相关教程,很是费时,等相关内容初步完成后,再和大家分享。对于k8s,还是上云更为简单、稳定并且节省成本,因此我们需要对主流云服务的容器服务进行了解,以便更好地应用于生产。

主流云服务容器服务介绍

Docker+ Kubernetes已成为云计算的主流

亚马逊AWS

Amazon Web Services (AWS) 是亚马逊公司旗下云计算服务平台,为全世界范围内的客户提供云解决方案。AWS面向用户提供包括弹性计算、存储、数据库、应用程序在内的一整套云计算服务,帮助企业降低IT投入成本和维护成本。

那么如何在AWS上运行Docker呢?AWS 同时为 Docker 开源解决方案和商业解决方案提供支持,并且可通过多种方式在 AWS 上运行容器:

微软Azure

Microsoft Azure 是一个开放而灵活的企业级云计算平台。通过 IaaS + PaaS 帮助用户加快发展步伐,提高工作效率并节省运营成本。

Azure是一种灵活和支持互操作的平台,它可以被用来创建云中运行的应用或者通过基于云的特性来加强现有应用。它开放式的架构给开发者提供了Web应用、互联设备的应用、个人电脑、服务器、或者提供最优在线复杂解决方案的选择。

在容器这块,Azure同样的提供了众多解决方案:

下面我们侧重介绍下以下服务:

阿里云

阿里云(www.aliyun.com)创立于2009年,是全球领先的云计算及人工智能 科技 公司,为200多个国家和地区的企业、开发者和政府机构提供服务。2017年1月阿里云成为奥运会全球指定云服务商。2017年8月阿里巴巴财报数据显示,阿里云付费云计算用户超过100万。阿里云致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠 科技 。阿里云在全球18个地域开放了49个可用区,为全球数十亿用户提供可靠的计算支持。此外,阿里云为全球客户部署200多个飞天数据中心,通过底层统一的飞天操作系统,为客户提供全球独有的混合云体验。

飞天(Apsara)是由阿里云自主研发、服务全球的超大规模通用计算操作系统。 它可以将遍布全球的百万级服务器连成一台超级计算机,以在线公共服务的方式为 社会 提供计算能力。 从PC互联网到移动互联网到万物互联网,互联网成为世界新的基础设施。飞天希望解决人类计算的规模、效率和安全问题。飞天的革命性在于将云计算的三个方向整合起来:提供足够强大的计算能力,提供通用的计算能力,提供普惠的计算能力。飞天诞生于2009年2月,目前为全球200多个国家和地区的创新创业企业、政府、机构等提供服务。

同样,阿里云对容器也提供了友好的支持:

容器服务提供高性能可伸缩的容器应用管理服务,支持用Docker和Kubernetes进行容器化应用的生命周期管理,提供多种应用发布方式和持续交付能力并支持微服务架构。容器服务简化了容器管理集群的搭建工作,整合了阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器运行环境。

容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级 Kubernetes 容器化应用的全生命周期管理。容器服务 Kubernetes 版简化集群的搭建和扩容等工作,整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳的 Kubernetes 容器化应用运行环境。

阿里云弹性容器实例(Elastic Container Instance)是 Serverless 和容器化的弹性计算服务。用户无需管理底层 ECS 服务器,只需要提供打包好的镜像,即可运行容器,并仅为容器实际运行消耗的资源付费。

容器镜像服务(Container Registry)提供安全的镜像托管能力,稳定的国内外镜像构建服务,便捷的镜像授权功能,方便用户进行镜像全生命周期管理。容器镜像服务简化了Registry的搭建运维工作,支持多地域的镜像托管,并联合容器服务等云产品,为用户打造云上使用Docker的一体化体验。

腾讯云

腾讯云为腾讯倾力打造的云计算品牌,以卓越 科技 能力助力各行各业数字化转型,为全球客户提供领先的云计算、大数据、人工智能服务,以及定制化行业解决方案。其基于QQ、微信、腾讯 游戏 等海量业务的技术锤炼,从基础架构到精细化运营,从平台实力到生态能力建设,腾讯云将之整合并面向市场,使之能够为企业和创业者提供集云计算、云数据、云运营于一体的云端服务体验。

在容器这块,腾讯云提供了如下解决方案:

腾讯云容器服务(Tencent Kubernetes Engine ,TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务。腾讯云容器服务完全兼容原生 kubernetes API ,扩展了腾讯云的 CBS、CLB 等 kubernetes 插件,为容器化的应用提供高效部署、资源调度、服务发现和动态伸缩等一系列完整功能,解决用户开发、测试及运维过程的环境一致性问题,提高了大规模容器集群管理的便捷性,帮助用户降低成本,提高效率。容器服务提供免费使用,涉及的其他云产品另外单独计费。

容器实例服务(Container Instance Service , CIS)可以帮用户在云上快捷、灵活的部署容器,让用户专注于构建程序和使用容器而非管理设备上。无需预购 CVM(云服务器),就可以在几秒内启动一批容器来执行任务。同时,开发者也可以通过 kubernetes API 把已有kubernetes 集群的 pod 调度到 CIS 上以处理突增业务。CIS 根据实际使用的资源计费,可以帮用户节约计算成本。使用 CIS 可以极大降低用户部署容器的门槛,降低用户执行 batch 型任务或处理业务突增的成本。

从上面主流的云服务中我们可以看到,没有哪家云厂商不支持Docker,同样的,也没有哪家云厂商不支持Kubernetes!也就是说,Docker+ Kubernetes已经成为云计算的主流!

什么是Kubernetes(k8s)

Kubernetes(简称k8s)诞生于谷歌,是一个开源的,用于管理云平台中多个主机上的容器化的应用,k8s的目标是让部署容器化的应用简单并且高效,其提供了应用部署、规划、更新、维护的机制。

k8s主要有以下特点:

支持公有云,私有云,混合云,多重云(multi-cloud) 。可以将容器化的工作负载从本地开发计算机无缝移动到生产环境。在本地基础结构以及公共云和混合云中,在不同环境中协调容器,保持一致性。

支持模块化,插件化,可挂载,可组合。并且k8s的扩展和插件在社区开发者和各大公司的支持下高速增长,用户可以充分利用这些社区产品/服务以添加各种功能。

支持自动部署,自动重启,自动复制,自动伸缩/扩展,并且可以定义复杂的容器化应用程序并将其部署在服务器群集甚至多个群集上——因为k8s会根据所需状态优化资源。通过内置的自动缩放器,k8s可轻松地水平缩放应用程序,同时自动监视和维护容器的正常运行。

Kubernetes正在塑造应用程序开发和管理的未来

k8s构建于 Google 数十年经验,一大半来源于 Google 生产环境规模的经验。结合了社区最佳的想法和实践,而且还在不断地高速迭代和更新之中。

她衔着金钥匙出生,一诞生就广受欢迎,更是在2017,其打败了所有的竞争对手,赢得了云计算的战争——主流的云厂商基本上都纷纷放弃了自己造“轮子”的举动,终止了各自的容器编排工具,加盟了k8s阵营,其中包括Red Hat、微软、IBM、阿里、腾讯、华为和甲骨文等。

k8s像风暴一样席卷了应用开发领域,并且已成为云原生应用程序(架构、组件、部署和管理方式)的事实标准,大量的开发者和企业正在使用k8s创建由微服务和无服务器功能组成的现代架构。

Docker+ Kubernetes已成为云计算的主流

容器是现代软件交付的未来,而Kubernetes是编排容器的最佳方案(事实上的标准)。

Docker 和Kubernetes相辅相成,联手打下了云计算的“万里江山”。Docker 为打包和分发容器化应用程序提供了一个开放的标准,而 Kubernetes 则协调和管理通过 Docker 创建的分布式容器化应用程序。换句话说,Kubernetes 提供了部署和运行通过Docker生成的应用程序所需的基础结构。

在主流的云服务,基于Docker+k8s的新型PaaS平台具有敏捷部署、弹性伸缩、灵活调度、故障自动恢复等优势,充分满足业务扩展中的资源支持,因此在短短两年之内,便从Docker Swarm、Cloud Foundry Diego、Kontena、Apache Mesos、Amazon ECS…等大量对手中脱颖而出,拿下了皇冠。

k8s和Docker的胜利意味着这是有史以来第一次,无论使用哪一种云平台,研发人员都可以拥有完全相同的计算环境。

D. 如何使用OpenStack,Docker和Spark打造一个云服务

蘑菇街基于 OpenStack 和 Docker 的私有云实践

本次主要想分享一下过去一年时间里,我们在建设基于Docker的私有云实践过程中,曾经遇到过的问题,如何解决的经验,还有我们的体会和思考,与大家共勉。
在生产环境中使用Docker有一些经历和经验。私有云项目是2014年圣诞节期间上线的,从无到有,经过了半年多的发展,经历了3次大促,已经逐渐形成了一定的规模。

架构
集群管理
大家知道,Docker自身的集群管理能力在当时条件下还很不成熟,因此我们没有选择刚出现的 Swarm,而是用了业界最成熟的OpenStack,这样能同时管理Docker和KVM。我们把Docker当成虚拟机来跑,是为了能满足业务上对虚拟化的需求。今后的思路是微服务化,把应用进行拆分,变成一个个微服务,实现PaaS基于应用的部署和发布。
通过OpenStack如何管理Docker?我们采用的是OpenStack+nova-docker+Docker的架构模式。nova- docker是StackForge上一个开源项目,它做为nova的一个插件,通过调用Docker的RESTful接口来控制容器的启停等动作。
我们在IaaS基础上自研了编排调度等组件,支持应用的弹性伸缩、灰度升级等功能,并支持一定的调度策略,从而实现了PaaS层的主要功能。
同时,基于Docker和Jenkins实现了持续集成(CI)。Git中的项目如果发生了git push等动作,便会触发Jenkins Job进行自动构建,如果构建成功便会生成Docker Image并push到镜像仓库。基于CI生成的Docker Image,可以通过PaaS的API或界面,进行开发测试环境的实例更新,并最终进行生产环境的实例更新,从而实现持续集成和持续交付。
网络和存储
网络方面,我们没有采用Docker默认提供的NAT网络模式,NAT会造成一定的性能损失。通过OpenStack,我们支持Linux bridge和Open vSwitch,不需要启动iptables,Docker的性能接近物理机的95%。
容器的监控
监控方面,我们自研了container tools,实现了容器load值的计算,替换了原有的top、free、iostat、uptime等命令。这样业务方在容器内使用常用命令时看到的是容器的值,而不是整个物理机的。目前我们正在移植Lxcfs到我们的平台上。
我们还在宿主机上增加了多个阈值监控和报警,比如关键进程监控、日志监控、实时pid数量、网络连接跟踪数、容器oom报警等等。
冗灾和隔离性
冗灾和隔离性方面,我们做了大量的冗灾预案和技术准备。我们能够在不启动docker daemon的情况下,离线恢复Docker中的数据。同时,我们支持Docker的跨物理机冷迁移,支持动态的CPU扩容/缩容,网络IO磁盘IO的限速。
遇到的问题及解决方法
接近一年不到的产品化和实际使用中我们遇到过各种的问题,使用Docker的过程也是不断优化Docker、不断定位问题、解决问题的过程。
我们现在的生产环境用的是CentOS 6.5。曾经有个业务方误以为他用的Docker容器是物理机,在Docker容器里面又装了一个Docker,瞬间导致内核crash,影响了同一台物理机的其他Docker容器。
经过事后分析是2.6.32-431版本的内核对network namespace支持不好引起的,在Docker内创建bridge会导致内核crash。upstream修复了这个bug,从2.6.32-431升级到2.6.32-504后问题解决。
还有一个用户写的程序有bug,创建的线程没有及时回收,容器中产生了大量的线程,最后在宿主机上都无法执行命令或者ssh登陆,报的错是"bash: fork: Cannot allocate memory",但通过free看空闲的内存却是足够的。
经过分析,发现是内核对pid的隔离性支持不完善,pid_max(/proc/sys/kernel/pid_max)是全局共享的。当一个容器中的pid数目达到上限32768,会导致宿主机和其他容器无法创建新的进程。最新的4.3-rc1才支持对每个容器进行pid_max限制。
我们还观察到docker的宿主机内核日志中会产生乱序的问题。经过分析后发现是由于内核中只有一个log_buf缓冲区,所有printk打印的日志先放到这个缓冲区中,docker host以及container上的rsyslogd都会通过syslog从kernel的log_buf缓冲区中取日志,导致日志混乱。通过修改 container里的rsyslog配置,只让宿主机去读kernel日志,就能解决这个问题。
除此之外,我们还解决了device mapper的dm-thin discard导致内核crash等问题。
体会和思考
最后分享一下我们的体会和思考,相比KVM比较成熟的虚拟化技术,容器目前还有很多不完善的地方,除了集群管理、网络和存储,最重要的还是稳定性。影响稳定性的主要还是隔离性的不完善造成的,一个容器内引起的问题可能会影响整个系统。
容器的memcg无法回收slab cache,也不对dirty cache量进行限制,更容易发生OOM问题。还有,procfs上的一些文件接口还无法做到per-container,比如pid_max。
另外一点是对容器下的运维手段和运维经验的冲击。有些系统维护工具,比如ss,free,df等在容器中无法使用了,或者使用的结果跟物理机不一致,因为系统维护工具一般都会访问procfs下的文件,而这些工具或是需要改造,或是需要进行适配。
虽然容器还不完善,但是我们还是十分坚定的看好容器未来的发展。Kubernetes、Mesos、Hyper、CRIU、runC等容器相关的开源软件,都是我们关注的重点。
Q&A
Q:请问容器间的负载均衡是如何做的?
A: 容器间的负载均衡,更多是PaaS和SaaS层面的。我们的P层支持4层和7层的动态路由,通过域名的方式,或者名字服务来暴露出对外的接口。我们能够做到基于容器的灰度升级,和弹性伸缩。
Q:请问你们的OpenStack是运行在CentOS 6.5上的吗?
A: 是的,但是我们针对OpenStack和Docker依赖的包进行了升级。我们维护了内部的yum源。
Q:请问容器IP是静态编排还是动态获取的?
A: 这个跟运维所管理的网络模式有关,我们内部的网络没有DHCP服务,因此对于IaaS层,容器的IP是静态分配的。对于PaaS层来说,如果有DHCP服务,容器的App所暴露出来IP和端口就可以做到动态的。
Q:请问你们当时部署的时候有没有尝试过用Ubuntu,有没有研究过两个系统间的区别,另外请问你们在OpenStack上是怎样对这些虚拟机监控的?
A: 我们没有尝试过Ubuntu,因为公司生产环境上用的是CentOS。我们的中间件团队负责公司机器的监控,我们和监控团队配合,将监控的agent程序部署到宿主机和每个容器里,这样就可以当成虚拟机来进行监控。
当然,容器的数据是需要从cgroups里来取,这部分提取数据的工作,是我们来实现的。
Q:容器间的网络选型有什么建议,据说采用虚拟网卡比物理网卡有不小的性能损失,Docker自带的weaves和ovs能胜任吗?
A: 容器的网络不建议用默认的NAT方式,因为NAT会造成一定的性能损失。之前我的分享中提到过,不需要启动iptables,Docker的性能接近物理机的95%。Docker的weaves底层应该还是采用了网桥或者Open vSwitch。建议可以看一下nova-docker的源码,这样会比较容易理解。
Q:静态IP通过LXC实现的吗?
A: 静态IP的实现是在nova-docker的novadocker/virt/docker/vifs.py中实现的。实现的原理就是通过ip命令添加 veth pair,然后用ip link set/ip netns exec等一系列命令来实现的,设置的原理和weaves类似。
Q:容器内的进程gdb你们怎么弄的,把gdb打包到容器内吗?
A: 容器内的gdb不会有问题的,可以直接yum install gdb。
Q:共享存储能直接mount到容器里吗?
A: 虽然没试过,但这个通过docker -v的方式应该没什么问题。
Q:不启动Docker Daemon的情况下,离线恢复Docker中的数据是咋做到的?
A: 离线恢复的原理是用dmsetup create命令创建一个临时的dm设备,映射到Docker实例所用的dm设备号,通过mount这个临时设备,就可以恢复出原来的数据。
Q:Docker的跨物理机冷迁移,支持动态的CPU扩容/缩容,网络IO磁盘IO的限速,是怎么实现的,能具体说说吗?
A:Docker的冷迁移是通过修改nova-docker,来实现OpenStack迁移的接口,具体来说,就是在两台物理机间通过docker commit,docker push到内部的registry,然后docker pull snapshot来完成的。
动态的CPU扩容/缩容,网络IO磁盘IO的限速主要是通过novadocker来修改cgroups中的cpuset、iops、bps还有TC的参数来实现的。
Q:请问你们未来会不会考虑使用Magnum项目,还是会选择Swarm?
A:这些都是我们备选的方案,可能会考虑Swarm。因为Magnum底层还是调用了Kubernetes这样的集群管理方案,与其用Magnum,不如直接选择Swarm或者是Kubernetes。当然,这只是我个人的看法。
Q:你们的业务是基于同一个镜像么,如果是不同的镜像,那么计算节点如何保证容器能够快速启动?
A:运维会维护一套统一的基础镜像。其他业务的镜像会基于这个镜像来制作。我们在初始化计算节点的时候就会通过docker pull把基础镜像拉到本地,这也是很多公司通用的做法,据我了解,腾讯、360都是类似的做法。
Q:做热迁移,有没有考虑继续使用传统共享存储的来做?
A: 分布式存储和共享存储都在考虑范围内,我们下一步,就计划做容器的热迁移。
Q:请问你们是直接将公网IP绑定到容器吗,还是通过其他方式映射到容器的私有IP,如果是映射如何解决原本二层的VLAN隔离?
A:因为我们是私有云,不涉及floating ip的问题,所以你可以认为是公网IP。VLAN的二层隔离完全可以在交换机上作。我们用Open vSwitch划分不同的VLAN,就实现了Docker容器和物理机的网络隔离。
Q:Device mapper dm-thin discard问题能说的详细些吗?
A:4月份的时候,有两台宿主机经常无故重启。首先想到的是查看/var/log/messages日志,但是在重启时间点附近没有找到与重启相关的信息。而后在/var/crash目录下,找到了内核crash的日志vmcore-dmesg.txt。日志的生成时间与宿主机重启时间一致,可以说明宿主机是发生了kernel crash然后导致的自动重启。“kernel BUG at drivers/md/persistent-data/dm-btree-remove.c:181!”。 从堆栈可以看出在做dm-thin的discard操作(process prepared discard),虽然不知道引起bug的根本原因,但是直接原因是discard操作引发的,可以关闭discard support来规避。
我们将所有的宿主机配置都禁用discard功能后,再没有出现过同样的问题。
在今年CNUTCon的大会上,腾讯和大众点评在分享他们使用Docker的时候也提到了这个crash,他们的解决方法和我们完全一样。
Q:阈值监控和告警那块,有高中低多种级别的告警吗,如果当前出现低级告警,是否会采取一些限制用户接入或者砍掉当前用户正在使用的业务,还是任由事态发展?
A:告警这块,运维有专门的PE负责线上业务的稳定性。当出现告警时,业务方和PE会同时收到告警信息。如果是影响单个虚拟机的,PE会告知业务方,如果严重的,甚至可以及时下掉业务。我们会和PE合作,让业务方及时将业务迁移走。
Q:你们自研的container tools有没有开源,GitHub上有没有你们的代码,如何还没开源,后期有望开源吗,关于监控容器的细粒度,你们是如何考虑的?
A:虽然我们目前还没有开源,单我觉得开源出来的是完全没问题的,请大家等我们的好消息。关于监控容器的细粒度,主要想法是在宿主机层面来监控容器的健康状态,而容器内部的监控,是由业务方来做的。
Q:请问容器的layer有关心过层数么,底层的文件系统是ext4么,有优化策略么?
A:当然有关心,我们通过合并镜像层次来优化docker pull镜像的时间。在docker pull时,每一层校验的耗时很长,通过减小层数,不仅大小变小,docker pull时间也大幅缩短。
Q:容器的memcg无法回收slab cache,也不对dirty cache量进行限制,更容易发生OOM问题。----这个缓存问题你们是怎么处理的?
A:我们根据实际的经验值,把一部分的cache当做used内存来计算,尽量逼近真实的使用值。另外针对容器,内存报警阈值适当调低。同时添加容器OOM的告警。如果升级到CentOS 7,还可以配置kmem.limit_in_bytes来做一定的限制。
Q:能详细介绍下你们容器网络的隔离?
A:访问隔离,目前二层隔离我们主要用VLAN,后面也会考虑VXLAN做隔离。 网络流控,我们是就是使用OVS自带的基于port的QoS,底层用的还是TC,后面还会考虑基于flow的流控。
Q:请问你们这一套都是用的CentOS 6.5吗,这样技术的实现。是运维还是开发参与的多?
A:生产环境上稳定性是第一位的。CentOS 6.5主要是运维负责全公司的统一维护。我们会给运维在大版本升级时提建议。同时做好虚拟化本身的稳定性工作。
Q:请问容器和容器直接是怎么通信的?网络怎么设置?
A:你是指同一台物理机上的吗?我们目前还是通过IP方式来进行通信。具体的网络可以采用网桥模式,或者VLAN模式。我们用Open vSwitch支持VLAN模式,可以做到容器间的隔离或者通信。
Q:你们是使用nova-api的方式集成Dcoker吗,Docker的高级特性是否可以使用,如docker-api,另外为什么不使用Heat集成Docker?
A:我们是用nova-docker这个开源软件实现的,nova-docker是StackForge上一个开源项目,它做为nova的一个插件,替换了已有的libvirt,通过调用Docker的RESTful接口来控制容器的启停等动作。
使用Heat还是NOVA来集成Docker业界确实一直存在争议的,我们更多的是考虑我们自身想解决的问题。Heat本身依赖的关系较为复杂,其实业界用的也并不多,否则社区就不会推出Magnum了。
Q:目前你们有没有容器跨DC的实践或类似的方向?
A:我们已经在多个机房部署了多套集群,每个机房有一套独立的集群,在此之上,我们开发了自己的管理平台,能够实现对多集群的统一管理。同时,我们搭建了Docker Registry V1,内部准备升级到Docker Registry V2,能够实现Docker镜像的跨DC mirror功能。
Q:我现在也在推进Docker的持续集成与集群管理,但发现容器多了管理也是个问题,比如容器的弹性管理与资源监控,Kubernetes、Mesos哪个比较好一些,如果用在业务上,那对外的域名解析如何做呢,因为都是通过宿主机来通信,而它只有一个对外IP?
A: 对于Kubernetes和Mesos我们还在预研阶段,我们目前的P层调度是自研的,我们是通过etcd来维护实例的状态,端口等信息。对于7层的可以通过Nginx来解析,对于4层,需要依赖于naming服务。我们内部有自研的naming服务,因此我们可以解决这些问题。对外虽然只有一个IP,但是暴露的端口是不同的。
Q:你们有考虑使用Hyper Hypernetes吗? 实现容器与宿主机内核隔离同时保证启动速度?
A:Hyper我们一直在关注,Hyper是个很不错的想法,未来也不排除会使用Hyper。其实我们最希望Hyper实现的是热迁移,这是目前Docker还做不到的。
Q:你们宿主机一般用的什么配置?独立主机还是云服务器?
A:我们有自己的机房,用的是独立的服务器,物理机。
Q:容器跨host通信使用哪一种解决方案?
A: 容器跨host就必须使用3层来通信,也就是IP,容器可以有独立的IP,或者宿主机IP+端口映射的方式来实现。我们目前用的比较多的还是独立ip的方式,易于管理。
Q:感觉贵公司对Docker的使用比较像虚拟机,为什么不直接考虑从容器的角度来使用,是历史原因么?
A:我们首先考虑的是用户的接受程度和改造的成本。从用户的角度来说,他并不关心业务是跑在容器里,还是虚拟机里,他更关心的是应用的部署效率,对应用本身的稳定性和性能的影响。从容器的角度,一些业务方已有的应用可能需要比较大的改造。比如日志系统,全链路监控等等。当然,最主要的是对已有运维系统的冲击会比较大。容器的管理对运维来说是个挑战,运维的接受是需要一个过程的。
当然,把Docker当成容器来封装应用,来实现PaaS的部署和动态调度,这是我们的目标,事实上我们也在往这个方向努力。这个也需要业务方把应用进行拆分,实现微服务化,这个需要一个过程。
Q:其实我们也想用容器当虚拟机使用。你们用虚拟机跑什么中间件?我们想解决测试关键对大量相对独立环境WebLogic的矛盾?
A:我们跑的业务有很多,从前台的主站Web,到后端的中间件服务。我们的中间件服务是另外团队自研的产品,实现前后台业务逻辑的分离。
Q:贵公司用OpenStack同时管理Docker和KVM是否有自己开发Web配置界面,还是单纯用API管理?
A:我们有自研的Web管理平台,我们希望通过一个平台管理多个集群,并且对接运维、日志、监控等系统,对外暴露统一的API接口。
Q:上面分享的一个案例中,关于2.6内核namespace的bug,这个低版本的内核可以安装Docker环境吗,Docker目前对procfs的隔离还不完善,你们开发的container tools是基于应用层的还是需要修改内核?
A:安装和使用应该没问题,但如果上生产环境,是需要全面的考虑的,主要还是稳定性和隔离性不够,低版本的内核更容易造成系统 crash或者各种严重的问题,有些其实不是bug,而是功能不完善,比如容器内创建网桥会导致crash,就是network namespace内核支持不完善引起的。
我们开发的container tools是基于应用的,不需要修改内核。
Q:关于冗灾方面有没有更详细的介绍,比如离线状态如何实现数据恢复的?
A:离线状态如何实现恢复数据,这个我在之前已经回答过了,具体来说,是用dmsetup create命令创建一个临时的dm设备,映射到docker实例所用的dm设备号,通过mount这个临时设备,就可以恢复出原来的数据。其他的冗灾方案,因为内容比较多,可以再另外组织一次分享了。你可以关注一下http://mogu.io/,到时候我们会分享出来。
Q:贵公司目前线上容器化的系统,无状态为主还是有状态为主,在场景选择上有什么考虑或难点?
A:互联网公司的应用主要是以无状态的为主。有状态的业务其实从业务层面也可以改造成部分有状态,或者完全不状态的应用。不太明白你说的场景选择,但我们尽量满足业务方的各种需求。
对于一些本身对稳定性要求很高,或对时延IO特别敏感,比如redis业务,无法做到完全隔离或者无状态的,我们不建议他们用容器。

多进程好还是多线程好等等,并不是说因为Spark很火就一定要使用它。在遇到这些问题的时候、图计算,目前我们还在继续这方面的工作:作为当前流行的大数据处理技术? 陈,它能快速创建一个Spark集群供大家使用,我们使用OpenStack? 陈。 问,Hadoop软硬件协同优化,在OpenPOWER架构的服务器上做Spark的性能分析与优化:您在本次演讲中将分享哪些话题。 问。多参与Spark社区的讨论。曾在《程序员》杂志分享过多篇分布式计算、Docker和Spark打造SuperVessel大数据公有云”,给upstrEAM贡献代码都是很好的切入方式、SQL,并拥有八项大数据领域的技术专利,MapRece性能分析与调优工具。例如还有很多公司在用Impala做数据分析:企业想要拥抱Spark技术,对Swift对象存储的性能优化等等。例如与Docker Container更好的集成,大数据云方向的技术负责人,Spark还是有很多工作可以做的?企业如果想快速应用Spark 应该如何去做,具体的技术选型应该根据自己的业务场景,Docker Container因为在提升云的资源利用率和生产效率方面的优势而备受瞩目,高性能FPGA加速器在大数据平台上应用等项目,再去调整相关的参数去优化这些性能瓶颈,一些公司在用Storm和Samaza做流计算: 相比于MapRece在性能上得到了很大提升?

E. 如何使用OpenStack,Docker和Spark打造一个云服务

IBM中国研究院高级研究员陈冠诚主要从事Big Data on Cloud,大数据系统性能分析与优化方面的技术研发。负责和参与过SuperVessel超能云的大数据服务开发,Hadoop软硬件协同优化,MapRece性能分析与调优工具,高性能FPGA加速器在大数据平台上应用等项目。在Supercomputing(SC),IEEE BigData等国际顶级会议和期刊上发表过多篇大数据数据处理技术相关的论文,并拥有八项大数据领域的技术专利。曾在《程序员》杂志分享过多篇分布式计算,大数据处理技术等方面的技术文章。以下为媒体针对陈冠诚的专访:

问:首先请介绍下您自己,以及您在Spark 技术方面所做的工作。

陈冠诚:我是IBM中国研究院的高级研究员,大数据云方向的技术负责人。我们围绕Spark主要做两方面的事情:第一,在IBM研究院的SuperVessel公有云上开发和运维Spark as a Service大数据服务。第二,在OpenPOWER架构的服务器上做Spark的性能分析与优化。

问:您所在的企业是如何使用Spark 技术的?带来了哪些好处?

陈冠诚:Spark作为新一代的大数据处理引擎主要带来了两方面好处:

相比于MapRece在性能上得到了很大提升。

在一个统一的平台上将批处理、SQL、流计算、图计算、机器学习算法等多种范式集中在一起,使混合计算变得更加的容易。

问:您认为Spark 技术最适用于哪些应用场景?

陈冠诚:大规模机器学习、图计算、SQL等类型数据分析业务是非常适合使用Spark的。当然,在企业的技术选型过程中,并不是说因为Spark很火就一定要使用它。例如还有很多公司在用Impala做数据分析,一些公司在用Storm和Samaza做流计算,具体的技术选型应该根据自己的业务场景,人员技能等多方面因素来做综合考量。

问:企业在应用Spark 技术时,需要做哪些改变吗?企业如果想快速应用Spark 应该如何去做?

陈冠诚:企业想要拥抱Spark技术,首先需要技术人员改变。是否有给力的Spark人才会是企业能否成功应用Spark最重要的因素。多参与Spark社区的讨论,参加Spark Meetup,给upstrEAM贡献代码都是很好的切入方式。如果个人开发者想快速上手Spark,可以考虑使用SuperVessel免费的Spark公有云服务,它能快速创建一个Spark集群供大家使用。

问:您所在的企业在应用Spark 技术时遇到了哪些问题?是如何解决的?

陈冠诚:我们在对Spark进行性能调优时遇到很多问题。例如JVM GC的性能瓶颈、序列化反序列化的开销、多进程好还是多线程好等等。在遇到这些问题的时候,最好的方法是做好Profiling,准确找到性能瓶颈,再去调整相关的参数去优化这些性能瓶颈。

另一方面,我们发现如果将Spark部署在云环境里(例如OpenStack管理的Docker Container)时,它的性能特征和在物理机上部署又会有很大的不同,目前我们还在继续这方面的工作,希望以后能有机会跟大家继续分享。

问:作为当前流行的大数据处理技术,您认为Spark 还有哪些方面需要改进?

陈冠诚:在与OpenStack这样的云操作系统的集成上,Spark还是有很多工作可以做的。例如与Docker Container更好的集成,对Swift对象存储的性能优化等等。

问:您在本次演讲中将分享哪些话题?

陈冠诚:我将分享的话题是“基于OpenStack、Docker和Spark打造SuperVessel大数据公有云”:

随着Spark在2014年的蓬勃发展,Spark as a Service大数据服务正成为OpenStack生态系统中的新热点。另一方面,Docker Container因为在提升云的资源利用率和生产效率方面的优势而备受瞩目。在IBM中国研究院为高校和技术爱好者打造的SuperVessel公有云中,我们使用OpenStack、Docker和Spark三项开源技术,在OpenPOWER服务器上打造了一个大数据公有云服务。本次演讲我们会向大家介绍如何一步一步使用Spark、Docker和OpenStack打造一个大数据公有云,并分享我们在开发过程中遇到的问题和经验教训。

问:哪些听众最应该了解这些话题?您所分享的主题可以帮助听众解决哪些问题?

陈冠诚:对如何构造一个大数据云感兴趣的同学应该会对这个话题感兴趣,开发SuperVessel的Spark as a Service服务过程中我们所做的技术选型、架构设计以及解决的问题应该能对大家有所帮助

阅读全文

与docker打包到云服务器相关的资料

热点内容
本机构所属的服务器是什么意思 浏览:783
c编译器有哪些段 浏览:862
qq原创表情在哪个文件夹 浏览:624
点点赚app现在怎么不能用了 浏览:363
网红阿里程序员事件 浏览:203
算法设计心得体会 浏览:116
java修改ip 浏览:149
php不需要编译吗 浏览:134
特斯拉新车如何用app控制 浏览:185
文档拖到文件夹就不见了 浏览:814
标致308压缩比是多少 浏览:749
服务器和备用服务器地址 浏览:926
程序员加班跳槽 浏览:706
青年员工在工作中如何化解压力 浏览:602
包子解压神器怎么玩才爽 浏览:735
联想加密电脑怎么做系统 浏览:881
解压最近的压力 浏览:710
如何知道王牌战争新出来的服务器 浏览:591
程序员建的房子 浏览:419
navicatlinux破解版 浏览:455