导航:首页 > 配服务器 > 软考服务器递归和迭代有什么区别

软考服务器递归和迭代有什么区别

发布时间:2023-05-25 03:57:44

1. DNS 递归和迭代的区别

默认情况下,DNS服务器使用递归方式来解析名字。递归的含义就是DNS服务器作为DNS客户端向其他DNS服务器查询此解析请求,直到获得解析结果,在此过程中,原DNS客户端则等待DNS服务器的回复。
如果你禁止DNS服务器使用递归方式,则DNS服务器工作在迭代方式,即向原DNS客户端返回一个参考答复,其中包含有利于客户端解析请求的信息(例如根提示信息等),而不再进行其他操作;原DNS客户端根据DNS服务器返回的参考信息再决定处理方式。但是在实际网络环境中,禁用DNS服务器的递归查询往往会让DNS服务器对无法进行本地解析的客户端请求返回一个服务器失败的参考答复,此时,客户端则会认为解析失败。
所以递归和迭代的不同之处就是当DNS服务器没有在本地完成客户端的请求解析时,由谁扮演DNS客户端的角色向其他DNS服务器发起解析请求。

2. 在计算机算法中,迭代和递归是什么意思它们有什么区别

举个例子:我想求1+2+3+4+..+100的值。
迭代的做法:从1到100,顺着往下累加。1+2=3,3+3=6,6+4=10,10+5=15……
程序表示,
int i=1,sum=0;
while(i<=100){
sum = sum +i;
}
递归的做法:我要求1到100的累加值,如果我已经得到1到99的累加值,将这个值加上100就是1到100的累加值;要得到1到99的累加值,如果已经得到1到98的累加值,将这个值加上99,就是1到99的累加值……最后我要得到1到2的累加值,我如果得到1自身累加值,再加上2即可,1自身的累加值显然就是1了。于是现在我们得到了1到2的累加值,将这个值加3就得到了1到3的累加值,……最后直到得到1到100的累加值。
程序表示,其中函数会调用自身,这就是递归方法的典型特征
int GetSum(int n)
{
if(n<=0) return 0;
else return n+GetSum(n-1);
}

上述例子中,其实递归最后得到结果也是用迭代方法完成的,只是在程序的处理上直观看不出来。两者都能很好的完成计算任务,不同之处在于思维方式上,从而导致不同的计算方法:迭代是正向思维,从头到尾思考问题;递归是逆向思维,他假设我们已经得到了部分结果(假设我已经知道了1到99的累加值,把这个值加上100我们就得到了1到100的累加值了),从尾部追溯到头部,从而让问题简化(当然这个例子中看不出来,这里只是方便理解,有兴趣可以参考一下http://ke..com/view/568949.htm 斐波那契数列 的构造方法)。

3. 什么是递归和迭代二者有何联系

  1. 递归是一种自包含(调用)结构,信轮迭代则是循环结构。二者都是重复一件事情。比如让你不断地在纸上画不重叠的圆圈就是循环;而让你不断地在圆圈内再画圆圈就是递归,比如中国的国徽就是一个递归图案。

  2. 递归应该是指递进并咐差回归,作为一种程序结构,其表现形式为在一个函数或过程内调用自己,其特点就是简洁。在递归代码中必须包含一条有效的条件返回,否则运行时将造成系统崩溃。当递进深度超过机器容量时,同样会造成系统崩溃衡坦皮。所以在大型数据处理中应谨慎使用递归结构。

  3. 循环是利用带有条件的跳跃(回)指令来重复一段代码。无条件回跳就是所谓的无限循环。

  4. 既然都是重复做一件事,那么在代码中递归和迭代是可以相互替换的。同样的处理内容,迭代代码比递归代码复杂的多,也安全的多。因为递归调用是对系统堆栈的考验,递归深度越深,系统崩溃的可能性就越大。而迭代则除了时间外不会占用系统额外资源。

4. DNS域名解析的两种方式递归查询和迭代查询之间有什么区别

1.递归查询:
一般客户机毕辩猛和服务器之间属递归查询,即当客户机向DNS服务器发出请求后,若DNS服务器本身不能解析,则会向另外的DNS服务器发出查询请求,得到结果后转交给客户机;
2.迭代查询(反复查询):
一手桥般DNS服务器之间属迭代查询,如:若DNS2不能灶汪响应DNS1的请求,则它会将DNS3的IP给DNS2,以便其再向DNS3发出请求;
举例:比如学生问老师一个问题,王老师告诉他答案这之间的叫递归查询。这期间也许王老师也不会,这时王老师问张老师,这之间的查询叫迭代查询!

5. 递归和迭代有什么区别

递归和迭代都是循环的一种。

简单地说,递归是重复调用函数自身实现循环。迭代是函数内某段代码实现循环,而迭代与普通循环的区别是:循环代码中参与运算的变量同时是保存结果的变量,当前保存的结果作为下一次循环计算的初始值。

递归循环中,遇到满足终止条件的情况时逐层返回来结束。迭代则使用计数器结束循环。当然很多情况都是多种循环混合采用,这要根据具体需求。

递归的例子,比如给定一个整数数组,采用折半查询返回指定值在数组中的索引,假设数组已排序,为方便描述,假设元素都为正数,数组长度为2的整数倍。

折半查询是查询的一种,比遍历所有元素要快很多。

intFind(int*ary,int桐兄index,intlen,intvalue)
{
if(len==1)//最后一个元素
{
if(ary[index]==value)returnindex;//成功查询返回索引
return-1;//失败,返回-1
}
//如果长度大于1,滚轿进行折半递归查询
inthalf=len/2;
//检查被查值是否大于上半部分最后一个值,如果是则递归查询后半部分
if(value>ary[index+half-1])
大轮肆returnFind(ary,index+half,half,value);
//否则递归查询上半部分
returnFind(ary,index,half,value);
}

迭代经典例子就是实数的累加,比如计算1-100所有实数的和。

intv=1;
for(i=2;i<=100;i++)
{
v=v+i;
}

6. 迭代算法和递归算法的异同

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:

一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?

分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有

u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……

根据这个规律,可以归纳出下面的递推公式:

u n = u n - 1 × 2 (n ≥ 2)

对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:

y=x*2

x=y

让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:

cls

x=1

for i=2 to 12

y=x*2

x=y

next i

print y

end

例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。

分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。

设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有

x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)

因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:

x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 )

让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:

cls

x=2^20

for i=1 to 15

x=x/2

next i

print x end

例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。

要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。

分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:

if n 为偶数 then

n=n/2

else

n=n*3+1

end if

这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:

cls

input "Please input n=";n

do until n=1

if n mod 2=0 then

rem 如果 n 为偶数,则调用迭代公式 n=n/2

n=n/2

print "—";n;

else

n=n*3+1

print "—";n;

end if

loop

end

迭代法

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x0;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:
【算法】迭代法求方程的根
{ x0=初始近似根;
do {
x1=x0;
x0=g(x1); /*按特定的方程计算新的近似根*/
} while ( fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f\n”,x0);
}
迭代算法也常用于求方程组的根,令
X=(x0,x1,…,xn-1)
设方程组为:
xi=gi(X) (I=0,1,…,n-1)
则求方程组根的迭代算法可描述如下:
【算法】迭代法求方程组的根
{ for (i=0;i
x=初始近似根;
do {
for (i=0;i
y=x;
for (i=0;i
x=gi(X);
for (delta=0.0,i=0;i
if (fabs(y-x)>delta) delta=fabs(y-x);
} while (delta>Epsilon);
for (i=0;i
printf(“变量x[%d]的近似根是 %f”,I,x);
printf(“\n”);
}
具体使用迭代法求根时应注意以下两种可能发生的情况:
(1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。
递归

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}

void main()
{ a[0]=3;
comb(5,3);
}
【问题】 背包问题
问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。
对于第i件物品的选择考虑有两种可能:
(1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。
(2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
按以上思想写出递归算法如下:
try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
{ /*考虑物品i包含在当前方案中的可能性*/
if(包含物品i是可以接受的)
{ 将物品i包含在当前方案中;
if (i
try(i+1,tw+物品i的重量,tv);
else
/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
恢复物品i不包含状态;
}
/*考虑物品i不包含在当前方案中的可能性*/
if (不包含物品i仅是可男考虑的)
if (i
try(i+1,tw,tv-物品i的价值);
else
/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
}
为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:
物品 0 1 2 3
重量 5 3 2 1
价值 4 4 3 1

并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。

按上述算法编写函数和程序如下:
【程序】
# include
# define N 100
double limitW,totV,maxV;
int option[N],cop[N];
struct { double weight;
double value;
}a[N];
int n;
void find(int i,double tw,double tv)
{ int k;
/*考虑物品i包含在当前方案中的可能性*/
if (tw+a.weight<=limitW)
{ cop=1;
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv;
}
cop=0;
}
/*考虑物品i不包含在当前方案中的可能性*/
if (tv-a.value>maxV)
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv-a.value;
}
}

void main()
{ int k;
double w,v;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入各物品的重量和价值\n”);
for (totv=0.0,k=0;k
{ scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“输入限制重量\n”);
scanf(“%1f”,&limitV);
maxv=0.0;
for (k=0;k find(0,0.0,totV);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n总价值为%.2f\n”,maxv);
}
作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。
【程序】
# include
# define N 100
double limitW;
int cop[N];
struct ele { double weight;
double value;
} a[N];
int k,n;
struct { int ;
double tw;
double tv;
}twv[N];
void next(int i,double tw,double tv)
{ twv.=1;
twv.tw=tw;
twv.tv=tv;
}
double find(struct ele *a,int n)
{ int i,k,f;
double maxv,tw,tv,totv;
maxv=0;
for (totv=0.0,k=0;k
totv+=a[k].value;
next(0,0.0,totv);
i=0;
While (i>=0)
{ f=twv.;
tw=twv.tw;
tv=twv.tv;
switch(f)
{ case 1: twv.++;
if (tw+a.weight<=limitW)
if (i
{ next(i+1,tw+a.weight,tv);
i++;
}
else
{ maxv=tv;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
case 0: i--;
break;
default: twv.=0;
if (tv-a.value>maxv)
if (i
{ next(i+1,tw,tv-a.value);
i++;
}
else
{ maxv=tv-a.value;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
}
}
return maxv;
}

void main()
{ double maxv;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入限制重量\n”);
scanf(“%1f”,&limitW);
printf(“输入各物品的重量和价值\n”);
for (k=0;k
scanf(“%1f%1f”,&a[k].weight,&a[k].value);
maxv=find(a,n);
printf(“\n选中的物品为\n”);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n总价值为%.2f\n”,maxv);
}

递归的基本概念和特点
程序调用自身的编程技巧称为递归( recursion)。
一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:
(1) 递归就是在过程或函数里调用自身;
(2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

7. 递归与迭代的区别

1、“递归”是指函数/过程/子程序在运行过程序中直接或间蠢液接调用自身而产生的重入现像.。在计算机编程里,递归指的是一个过程:函数不断引用自身,直到引用余粗的对象已知。
2、“迭代”的含义是:重复反馈过程的活动,其目的通常是为了逼近所带毁物需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。

8. 迭代和递归的区别是什么

一、含义不同;

程序调用自身的编程技巧称为递归,是函数自己调用自己。一个函数在其定义中直接或间接调用自身的一种方法,它通常把一个大型的复杂的问题转化为一个与原问题相似的规模较小的问题来解决。

迭代利用变量的原值推算出变量的一个新值。如果递归是自己调用自己的话,迭代就是A不停的调用B。

二、转换不同:

递归中一定有迭代,但是迭代中不一定有递归,大部分可以相互转换慧氏。能用迭代的不用递归,递归调用函数,浪费空间,并且递归太深容易造成堆栈的溢出。

递归函数是通过调用函数自身来完成任务,而且在每次调用自身时减少任务量。而迭代是循环的一种形式,这种循环不是由用户输州或入而控制,每次迭前迹散代步骤都必须将剩余的任务减少。

(8)软考服务器递归和迭代有什么区别扩展阅读:

迭代法的主要研究课题是对所论问题构造收敛的迭代格式,分析它们的收敛速度及收敛范围。迭代法的收敛性定理可分成下列三类:

①局部收敛性定理:假设问题解存在,断定当初始近似与解充分接近时迭代法收敛;

②半局部收敛性定理:在不假定解存在的情况下,根据迭代法在初始近似处满足的条件,断定迭代法收敛于问题的解;

③大范围收敛性定理:在不假定初始近似与解充分接近的条件下,断定迭代法收敛于问题的解。

9. 递归查询和迭代查询的区别是什么

1、工作方式上的区别

递归查询是域名服务器将代替提出请求的客户机(下级DNS服务器)进行域名查询,若域名服务器不能直接回答,则域名服务器会在域各树中的各分支的上下进行递归查询,最终将返回查询结果给客户机。

迭代查询是能够使其他服务器返回一个最佳的查询点提示或主机地址,若此最佳的查询点中包含需要查询的主机地址,则返回主机 地址信息,若此时服务器不能够直接查询到主机地址,则是按照提示的指引凳卜依次查询。

2、使用上的区别

一般由DNS工作站提出的查询请求便属于递归查询。一般发生在客户端与服务器间,也有特殊情况是dns服务器与dns服务器之间。

根域名服务器总应该使用迭代查询,而不应该使用递归查询。一般的早氏,每次指引都会更靠近根服务器(向上),查寻到根域名服务器后,则会再次根据提示向下枣睁穗查找。

3、查询状态上的区别

递归查询,在域名服务器查询期间,客户机将完全处于等待状态。

迭代查询是直到服务器给出的提示中包含所需要查询的主机地址为止。

10. 递归和迭代的区别,联系,优缺点及实例对比

区别和联系:递归是迭代的一个特例,从理论上讲,任何递归都可以转换成迭代。
优缺点及对比:递归性能不如迭代,但是递归思路简单清晰,并且有些时候是必须要用递归才能做,而迭代是做不到的,比如,在实际开发过中,有那么一张表,描述了实体之间的层次关系的,比如要遍历所有实体之间存在的层次关系,即n:m的关系,且事先是不知道每个实体间的数量,所以如果用迭代是根本实现不了。必须借助递归进行深层次递归才能得到结果。

阅读全文

与软考服务器递归和迭代有什么区别相关的资料

热点内容
oracle命令导出 浏览:536
androidaccessory 浏览:693
做传奇什么情况需要服务器 浏览:635
郑州鲲鹏服务器如何选择 浏览:482
怎么下载商家app 浏览:380
贵州省dns服务器地址云空间 浏览:781
githubpython教程 浏览:511
程序员接受别人批评 浏览:870
编译运行按哪个键 浏览:438
程序员那么可爱小说免费看 浏览:475
华为android招聘 浏览:227
php获取端口号 浏览:456
ubuntusudo命令 浏览:581
腾讯云编译打包 浏览:426
混沌pdf 浏览:364
安卓手机断流是什么意思 浏览:371
上滑命令 浏览:901
linux红帽服务器版 浏览:65
检查jdk版本命令 浏览:962
如何加入叶枫服务器 浏览:863