A. ubuntu linux服务器下怎么增加 单个端口下的TCP并发量
查看httpd进程数:
Linux命令:
ps -ef | grep httpd | wc -l
返回结果示例:1388
表示服务器能够处理1388个并发请求,这个值服务器可根据誉搏负载情况自动调整。
查看服务器的并发请求数及其TCP连接状态:
Linux命令:
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'
返回结果示例:蚂野
LAST_ACK 5
SYN_RECV 30
ESTABLISHED 1597
FIN_WAIT1 51
FIN_WAIT2 504
TIME_WAIT 1057
其中的SYN_RECV表示正在等待处理的请求数;庆物祥ESTABLISHED表示正常数据传输状态;TIME_WAIT表示处理完毕,等待超时结束的请求数。
B. 如何设计高并发的服务器,如何提升服务器性能
您好楼主.希望对您有帮助.高并发对后台开发宏袭神同学来说,既熟悉又陌生。熟悉是因为面试和工作经常会提及它。陌生的原由是服务器因高并发导致出现各位问题的情况少之又少。同时,想收获这方面的经验也是摸着石头过河,需要大量学习理论知识,再去探索。
如果是客户端开发的同学,字典中是没有“高并发”这个名词。这验证一句老话蔽亏,隔行如隔山。客户端开发,特别是手机应用开发,更多地是考虑如何优化应用的性能,降低App的卡顿率
在这个“云”的时代,提高分布式系统并发能力的方式,方法论上主要有两种:垂直扩展(ScaleUp)与水平扩展(ScaleOut)。
1)垂直扩展
提升单机处理能力。垂直扩展的方式又有两种:
增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;
提升单机架构性能,例如:使用Cache来减少I/O次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间禅如;
2)水平扩展
只要增加服务器数量,就能线性扩充系统性能。虚拟化技术的出现,让水平扩展变得轻松且简单。现在的云主机几乎是虚拟主机,而不是物理主机。这样的话,线性扩充也就是分分钟的事,前提是要有足够的物理主机支撑。
Web框架层
Web框架层就是我们开发出来的DjangoWeb应用程序。它负责处理HTTP请求的动态数据。
WSGI层
WSGI不是用于与程序交互的API,也不是真实的代码,WSGI只是一种接口。它只适用于Python语言,其全称为WebServerGatewayInterface。其定义了web服务器和web应用之间的接口规范。
Web服务器层
Web服务层作用是主要是接收HTTP请求并返回响应。常见的web服务器有Nginx,Apache,IIS等。
特别是Nginx,它的出现是为了解决C10K问题。Nginx依靠异步事件驱动架构来帮助其处理大量的并发会话,由于其对资源的轻量利用和伸缩自如的特性,它成为了广受欢迎的web服务器。
Django框架注重的数据交互。所以考虑的问题是Django适不适合于高并发的场景。
它是一个经过大型网站规模验证的框架。Instagram支撑上亿日活,所以Django能适用于高并发场景。所以不是想着Django框架能支撑到多大的并发量,而是我们想要抗住很大的并发量,怎么优化现有框架。总之这个问题不是这么简单的.活到老学到老.多看看技术类书籍.结合自己的能力在进行改进.
C. 如果有两台服务器,每台只能承受100W的并发,有什么办法让他们能够承受1000W的并发
其实比较简单.用多台服务器做负载均衡就可以解决这个问题,
网站有这么大的访问量.通常前端页面和后台数据库是相对独立的.这样可以用一台高配置的服务器来放数据库.把网站的前端页面复制成10份,并放在10台不同的服务器上面.利用DNSPOD做路由智能解析.DNSPOD默认就有自动分流的功能.会根据每台机器所承受的访问量来自动分配到其他机器上面.并可以把一个域名解析在10个不同的IP.每台服务器的并发数是100万.10台就是一千乱宴万.
另外目前一台至强高配置的处理器.理论上来讲最大并发数是一两万.你说的一台机器支持100万并不现实.如果真有1000万的并发访问量时.基返伏本上你就有经济实力可以自己做一个机房了.
海腾漏陪携数据杨闯为你解答.若有相关问题需要帮忙的可以找我.
D. 如何提高并发处理速度
大数据并发处理解决方案:
1、HTML静态化
效率最高、消耗最小的就是纯静态化的html页面,所以尽可能使网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,无法全部手动去挨个实现,于是出现了常见的信息发布系统CMS,像常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
2、图片服务器分离
对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadMole,保证更高的系统消耗和执行效率。 这一实现起来是比较容易的一现,如果服务器集群操作起来更方便,如果是独立的服务器,新手可能出现上传图片只能在服务器本地的情况下,可以在令一台服务器设置的IIS采用网络路径来实现图片服务器,即不用改变程序,又能提高性能,但对于服务器本身的IO处理性能是没有任何的改变。
3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是需要使用数据库集群或者库表散列。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和ENet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。 负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择。
硬件四层交换
第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。
E. 如何提高高性能服务器并发量
可以通过消除瓶颈来提高高性能服务器并发量。当能够消除所有的瓶颈时就能够最大的念册发挥硬件性能,让系统的性能和并发数到达最佳。【感兴趣的话点击此处,免费了解一下】
采用多线程多核编程,使用事件驱动或异步消息机制,尽量减少阻塞和等待操作(如I/O阻塞、同步等待或计时/超时等)。它的原理如下:
1,多线程多核编程,消除cpu瓶颈。
2,采用IOCP或epoll,利用状态监测和团高悄通知方式,消除网络I/O阻塞瓶颈。
3,采用事件驱动或异步消息机制,可以消除不必要的等待操作。
4,如果是Linux,可以采用AIO来消除磁盘I/O阻塞瓶颈。
5,在事件驱动框架或异步消息中统一处理timer事件,变同步为异步,而且可以在一个线程处理无数timer事件。
6,深入分析外部的阻塞来源,消除它。 比如数据库查询较慢,导致服务器处理较慢,并发数上不去,这时就要优化数据库性能。
7,如果与某个其他server通信量很大,导致性能下降较多。 可以考虑把这两个server放在一个主机上,采用共享内存的方式来做IPC通信,可以塌渣大大提高性能。
亿万克作为中国战略性新兴产业领军品牌,拥有行业前沿技术,致力于新型数据中心建设,构筑云端安全数字底座,为客户提供集产品研发、生产、部署、运维于一体的服务器及IT系统解决方案业务,产品和技术完全拥有自主知识产权,应用领域涵盖云计算、数据中心、边缘计算、人工智能、金融、电信、教育、能源等,为客户提供全方位安全自主可控技术服务保障。
F. 如何提高linux socket服务器的并发数和性能
你查查为什么epoll出错,大并发,一般都是用epoll的。肯定用不了多线程。
G. 如何提高高性能服务器并发量
消除瓶颈是提高服务器性能和并发能力的唯一途径。 如果你能够消除所有的瓶颈,你就能够最大的发挥硬件性能,让系统的性能和并发数到达最佳。 采用多线程多核编程,使用事件驱动或异步消息机制,尽量减少阻塞和等待操作(如I/O阻塞、同步等待或计时/超时等)。 原理: 1、多线程多核编程,消除cpu瓶颈。 2、采用IOCP或epoll,利用状态监测和通知方式,消除网络I/O阻塞瓶颈。 3、采用事件驱动或异步消息机制,可以消除不必要的等待操作。 4、如果是Linux,可以采用AIO来消除磁盘I/O阻塞瓶颈。 5、在事件驱动框架或异步消息中统一处理timer事件,变同步为异步,而且可以在一个线程处理无数timer事件。 6、深入分析外部的阻塞来源,消除它。 比如数据库查询较慢,导致服务器处理较慢,并发数上不去,这时就要优化数据库性能。 7、如果与某个其他server通信量很大,导致性能下降较多。 可以考虑把这两个server放在一个主机上,采用共享内存的方式来做IPC通信,可以大大提高性能。
H. 电子商务网站中高负载,高并发指的到底是什么解决思路有哪些
电子商务网站高负载,简单可以分为前端和后台:
前端主要是图片(应该没有文件下载吧),因为是电子商务网站,少不了大量的图片,用户集中的情况下,网页加载就会变的极其缓慢。
解决思路:1、压缩图片,使产品图不失真的情况下尽可能的减少体积,节省宽带。2、增大服务器带宽。3、优化网页代码,尽量采用异步加载方式。4、CDN
后台则是数据处理和数据库负载,电子商务网站后台除了庞大的用户数据要处理意外,还有大量订单,和结算数据。
解决思路:增大数据库服务器配置。
高并发,是所有访问量大的网站都会遇到的问题,并发数是指同一时刻,服务器能接受多少次同时访问,比如服务器配置并发数为200,则这一刻只能允许200个用户同时访问,超过并发数,轻则用户打不开网站,严重的则是服务器宕机。
解决思路:1、CDN。2、增加服务器配置
注:CDN是现在网站普遍使用的加速方案,对减轻服务器负载,避免高并发,缓解恶意攻击都有很好的效果,其主要原理就是将服务器上的数据分发给多个服务器,用户访问的是CDN服务器,从而减轻和保护了网站服务器,也就是常说的云服务器。
I. lamp架构提高服务器并发要注意哪些问题
对于大流量、大并发量的网站系统架构来说,除了硬件上使用高性能的服务器、负载均衡、CDN等之外,在软件架构上需要重点关注下面几个环节:使用高性能的操作系统(OS)、高性能的网页服务器(Web Server)、高性能的数据库(Databse)、高效率的编程语言等。下面我将从这几点对其一一讨论。
操作系统
Linux操作系统有很多个不同的发行版,如Red Hat Enterprise Linux、SUSE Linux Enterprice、Debian、Ubuntu、CentOS等,每一个发行版都有自己的特色,比如RHEL的稳定,Ubuntu的易用,基于稳定性和性能的考虑,操作系统选择CentOS(Community ENTerprise Operating System)是一个理想的方案。
CentOS(Community ENTerprise Operating System)是Linux发行版之一,是RHEL/Red Hat Enterprise Linux的精简免费版,和RHEL为同样的源代码,不过,RHEL和SUSE LE等企业版,提供的升级服务均是收费升级,无法免费在线升级,因此要求免费的高度稳定性的服务器可以用CentOS替代Red Hat Enterprise Linux使用。
LAMP网站架构图
Web服务器、缓存和PHP加速
Apache是LAMP架构最核心的Web Server,开源、稳定、模块丰富是Apache的优势。但Apache的缺点是有些臃肿,内存和CPU开销大,性能上有损耗,不如一些轻量级的Web服务器(例如nginx)高效,轻量级的Web服务器对于静态文件的响应能力来说远高于Apache服务器。
Apache做为Web Server是负载PHP的最佳选择,如果流量很大的话,可以采用nginx来负载非PHP的Web请求。nginx是一个高性能的HTTP和反向代理服务器,Nginx以它的稳定性、丰富的功能集、示例配置文件和低系统资源的消耗而闻名。Nginx不支持PHP和CGI等动态语言,但支持负载均衡和容错,可和Apache配合使用,是轻量级的HTTP服务器的首选。
Web服务器的缓存也有多种方案,Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。Squid Cache是一个Web缓存服务器,支持高效的缓存,可以作为网页服务器的前置cache服务器缓存相关请求来提高Web服务器的速度,把Squid放在Apache的前端来缓存Web服务器生成的动态内容,而Web应用程序只需要适当地设置页面实效时间即可。如访问量巨大则可考虑使用memcache作为分布式缓存。
PHP的加速使用eAccelerator加速器,eAccelerator是一个自由开放源码PHP加速器,优化和动态内容缓存,提高了性能PHP脚本的缓存性能,使得PHP脚本在编译的状态下,对服务器的开销几乎完全消除。它还有对脚本起优化作用,以加快其执行效率。使PHP程序代码执效率能提高1-10倍。
具体的解决方案有以下几种:
1、squid + Apache + PHP + eAccelerator
使用Apache负载PHP,使用squid进行缓存,html或图片的请求可以直接由squid返回给用户。很多大型网站都采用这种架构。
2、nginx/Apache + PHP(fastcgi) + eAccelerator
使用nginx或Apache负载PHP,PHP使用fastcgi方式运行,效率较高。
3、nginx + Apache + PHP + eAccelerator
此方案综合了nginx和Apache的优点,使用Apache负载PHP,nginx负责解析其他Web请求,使用nginx的rewrite模块,Apache端口不对外开放。
数据库
开源的数据库中,MySQL在性能、稳定性和功能上是首选,可以达到百万级别的数据存储,网站初期可以将MySQL和Web服务器放在一起,但是当访问量达到一定规模后,应该将MySQL数据库从Web Server上独立出来,在单独的服务器上运行,同时保持Web Server和MySQL服务器的稳定连接。
当数据库访问量达到更大的级别,可以考虑使用MySQL Cluster等数据库集群或者库表散列等解决方案。
总的来说,LAMP架构的网站性能会远远优于Windows IIS + ASP + Access(例如月光博客)这样的网站,可以负载的访问量也非常大,国内的大量个人网站如果想要支撑大访问量,采用LAMP架构是一个不错的方案。
综上所述,基于LAMP架构设计具有成本低廉、部署灵活、快速开发、安全稳定等特点,是Web网络应用和环境的优秀组合。
J. 如何提高服务器并发能力
有什么方法衡量服务器并发处理能力
1. 吞吐率
吞吐率,单位时间里服务器处理的最大请求数,单位req/s
从服务器角度,实际并发用户数的可以理解为服务器当前维护的代表不同用户的文件描述符总数,也就是并发连接数。服务器一般会限制同时服务的最多用户数,比如apache的MaxClents参数。
这里再深入一下,对于服务器来说,服务器希望支持高吞吐率,对于用户来说,用户只希望等待最少的时间,显然,双方不能满足,所以双方利益的平衡点,就是我们希望的最大并发用户数。
2. 压力测试
有一个原理一定要先搞清楚,假如100个用户同时向服务器分别进行10个请求,与1个用户向服务器连续进行1000次请求,对服务器的压力是一样吗?实际上是不一样的,因对每一个用户,连续发送请求实际上是指发送一个请求并接收到响应数据后再发送下一个请求。这样对于1个用户向服务器连续进行1000次请求, 任何时刻服务器的网卡接收缓冲区中只有1个请求,而对于100个用户同时向服务器分别进行10个请求,服务器的网卡接收缓冲区最多有100个等待处理的请求,显然这时的服务器压力更大。
压力测试前提考虑的条件
并发用户数: 指在某一时刻同时向服务器发送请求的用户总数(HttpWatch)
总请求数
请求资源描述
请求等待时间(用户等待时间)
用户平均请求的等待时间
服务器平均请求处理的时间
硬件环境
压力测试中关心的时间又细分以下2种:
用户平均请求等待时间(这里暂不把数据在网络的传输时间,还有用户PC本地的计算时间计算入内)
服务器平均请求处理时间
用户平均请求等待时间主要用于衡量服务器在一定并发用户数下,单个用户的服务质量;而服务器平均请求处理时间就是吞吐率的倒数,一般来说,用户平均请求等待时间 = 服务器平均请求处理时间 * 并发用户数
怎么提高服务器的并发处理能力
1. 提高CPU并发计算能力
服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计使得多个任务可以轮流使用系统资源,这些资源包括CPU,内存以及I/O. 这里的I/O主要指磁盘I/O, 和网络I/O。
多进程 & 多线程
多执行流的一般实现便是进程,多进程的好处可以对CPU时间的轮流使用,对CPU计算和IO操作重叠利用。这里的IO主要是指磁盘IO和网络IO,相对CPU而言,它们慢的可怜。
而实际上,大多数进程的时间主要消耗在I/O操作上。现代计算机的DMA技术可以让CPU不参与I/O操作的全过程,比如进程通过系统调用,使得CPU向网卡或者磁盘等I/O设备发出指令,然后进程被挂起,释放出CPU资源,等待I/O设备完成工作后通过中断来通知进程重新就绪。对于单任务而言,CPU大部分时间空闲,这时候多进程的作用尤为重要。
多进程不仅能够提高CPU的并发度。其优越性还体现在独立的内存地址空间和生命周期所带来的稳定性和健壮性,其中一个进程崩溃不会影响到另一个进程。
但是进程也有如下缺点:
fork()系统调用开销很大: prefork
进程间调度和上下文切换成本: 减少进程数量
庞大的内存重复:共享内存
IPC编程相对比较麻烦