导航:首页 > 配服务器 > 服务器端该如何处理高并发的任务

服务器端该如何处理高并发的任务

发布时间:2023-05-31 02:23:44

Ⅰ 如何设计高并发的服务器,如何提升服务器性能

您好楼主.希望对您有帮助.高并发对后台开发宏袭神同学来说,既熟悉又陌生。熟悉是因为面试和工作经常会提及它。陌生的原由是服务器因高并发导致出现各位问题的情况少之又少。同时,想收获这方面的经验也是摸着石头过河,需要大量学习理论知识,再去探索。

如果是客户端开发的同学,字典中是没有“高并发”这个名词。这验证一句老话蔽亏,隔行如隔山。客户端开发,特别是手机应用开发,更多地是考虑如何优化应用的性能,降低App的卡顿率

在这个“云”的时代,提高分布式系统并发能力的方式,方法论上主要有两种:垂直扩展(ScaleUp)与水平扩展(ScaleOut)。

1)垂直扩展

提升单机处理能力。垂直扩展的方式又有两种:

增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;

提升单机架构性能,例如:使用Cache来减少I/O次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间禅如;

2)水平扩展

只要增加服务器数量,就能线性扩充系统性能。虚拟化技术的出现,让水平扩展变得轻松且简单。现在的云主机几乎是虚拟主机,而不是物理主机。这样的话,线性扩充也就是分分钟的事,前提是要有足够的物理主机支撑。

Web框架层

Web框架层就是我们开发出来的DjangoWeb应用程序。它负责处理HTTP请求的动态数据。

WSGI层

WSGI不是用于与程序交互的API,也不是真实的代码,WSGI只是一种接口。它只适用于Python语言,其全称为WebServerGatewayInterface。其定义了web服务器和web应用之间的接口规范。

Web服务器层

Web服务层作用是主要是接收HTTP请求并返回响应。常见的web服务器有Nginx,Apache,IIS等。

特别是Nginx,它的出现是为了解决C10K问题。Nginx依靠异步事件驱动架构来帮助其处理大量的并发会话,由于其对资源的轻量利用和伸缩自如的特性,它成为了广受欢迎的web服务器。

Django框架注重的数据交互。所以考虑的问题是Django适不适合于高并发的场景。

它是一个经过大型网站规模验证的框架。Instagram支撑上亿日活,所以Django能适用于高并发场景。所以不是想着Django框架能支撑到多大的并发量,而是我们想要抗住很大的并发量,怎么优化现有框架。总之这个问题不是这么简单的.活到老学到老.多看看技术类书籍.结合自己的能力在进行改进.

php怎么处理高并发

以下内容转载自徐汉彬大牛的博客亿级Web系统搭建——单机到分布式集群

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。

Web负载均衡

Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。

负载均衡的策略有很多,我们从简单的讲起哈。

1.HTTP重定向

当用户发来请求的时候,Web服务器通过修改HTTP响应头中的Location标记来返回一个新的url,然后浏览器再继续请求这个新url,实际上就是页面重定向。通过重定向,来达到“负载均衡”的目标。例如,我们在下载PHP源码包的时候,点击下载链接时,为了解决不同国家和地域下载速度的问题,它会返回一个离我们近的下载地址。重定向的HTTP返回码是302

这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。

2. 反向代理负载均衡

反向代理服务的核心工作主要是转发HTTP请求,扮演了浏览器端和后台Web服务器中转的角色。因为它工作在HTTP层(应用层),也就是网络七层结构中的第七层,因此也被称为“七层负载均衡”。可以做反向代理的软件很多,比较常见的一种是Nginx。

Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。

解决方案主要有两种:

1.配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。

2.将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。

反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。

3. IP负载均衡

IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。

在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。

上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。

IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。

4. DNS负载均衡

DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。

这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。

5. DNS/GSLB负载均衡

我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。

“向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如.com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。

CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/图片等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。

例如,我访问了一张imgcache.gtimg.cn上的图片(腾讯的自建CDN,不使用qq.com域名的原因是防止http请求的时候,带上了多余的cookie信息),我获得的IP是183.60.217.90。

这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。

Web系统的缓存机制的建立和优化

刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。

最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。

我们从最根本的数据存储开始看哈。

一、 MySQL数据库内部缓存使用

MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。

1. 建立恰当的索引

最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等操作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询操作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。

2. 数据库连接线程池缓存

如果,每一个数据库操作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。

其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

3. Innodb缓存设置(innodb_buffer_pool_size)

innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。

4. 分库/分表/分区。

MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等操作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。

二、 MySQL数据库多台服务搭建

1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。

1. 建立MySQL主从,从库作为备份

这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。

2. MySQL读写分离,主库写,从库读。

两台数据库做读写分离,主库负责写入类的操作,从库负责读的操作。并且,如果主库发生故障,仍然不影响读的操作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。

3. 主主互备。

两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。

不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。

三、 MySQL数据库机器之间的数据同步

每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。

于是,解决同步问题,就是我们下一步需要关注的点。

1. MySQL自带多线程同步

MySQL5.6开始支持主库和从库数据同步,走多线程。但是,限制也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的操作,是具有顺序的,尤其当SQL操作中含有对于表结构的修改等操作,对于后续的SQL语句操作是有影响的。因此,从库同步数据,必须走单进程。

2. 自己实现解析binlog,多线程写入。

以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。

国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到限制,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。

四、 在Web服务器和数据库之间建立缓存

实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。

1. 页面静态化

用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。

在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。

2. 单台内存缓存

通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value操作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。

内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。

3. 内存缓存集群

当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。

Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。

对于使用缓存服务的客户端来说,这一切是透明的。

内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。

4. 减少数据库“写”

上面的机制,都实现减少数据库的“读”的操作,但是,写的操作也是一个大的压力。写的操作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。

先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。

除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Rendant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。

5. NoSQL存储

不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。

这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。

国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。

6. 空节点查询问题

当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。

在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。

我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。

异地部署(地理分布式)

完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。

一、 核心集中与节点分散

有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。

当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。

这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。

·核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。

·节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。

例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图:

需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。
国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。

二、 节点容灾和过载保护

节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。

过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。

解决过载保护,一般2个方向:

·拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。

·分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。

小结

Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。

系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。

Ⅲ 求助,需要多线程处理时,并发量过大时该如何

这个很简单,高并发有多种解决方法:

1、从代码上分入手,必须得保证代码没有冗余,不要有废代码;
2、从服务器上入手,高并发一台服务器并发量有限,我们可以采用多台服务器来分担压力;
3、从存储方便入手,像我们一般高并发但是数据却可以不用存到数据库中的,我们就存在内存中,因为读内存的速度是数据库的N倍。

Ⅳ 如何处理高并发

问题一:java程序员面试时被问到:如何在j2ee项目中处理高并发量访问? 该怎么回答? 请仔细看题干再回答 blog.csdn/y_h_t/article/details/6322823
你是一名java程序员,这些应该知道些吧

问题二:如何处理高并发带来的系统性能问题 那必须了解linux中的基本使用,比如如何找到某个路径,如何打开一个文件,如何编辑修改一个文件等等,那就是linux中命令的使用;还有就是必须知道linux服务器中所用的什么服务器(有weblogic、websphere等等);精通相关服务器的重要属性配置等等。

问题三:JAVA中高访问量高并发的问题怎么解决? 你指的高并发量大概有多少?
几点需要注意:
尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。
用jprofiler等工具找出性能瓶颈,减少额外的开销。
优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。
优化数据库结构,多做索引,提高查询效率。
统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。
能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。
解决以上问题后,使用服务器集群来解决单台的瓶颈问题。
基本上以上述问题解决后,达到系统最优。
至于楼上有人提到别用JAVA来做,除非是低层的连接数过大(如大量的端口占用需求),这种情况下考虑直接C来写,其他的可以用JAVA来做。

问题四:项目中怎么控制多线程高并发访问 synchronized关键字主要解决多线程共享数据同步问题。
ThreadLocal使用场合主要解决多线程中数据因并发产生不一致问题。
ThreadLocal和Synchonized都用于解决多线程并发访问。但是ThreadLocal与synchronized有本质的区别:
synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问。而ThreadLocal为每一个线程都提供了变量的副本,使 得每个线程在某一时间访问到的并不是同一个对象,这样就隔离了多个线程对数据的数据共享。而Synchronized却正好相反,它用于在多个线程间通信 时能够获得数据共享。
Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离。当然ThreadLocal并不能替代synchronized,它们处理不同的问题域。Synchronized用于实现同步机制,比ThreadLocal更加复杂。
1、Java中synchronized用法
使用了synchronized关键字可以轻松地解决多线程共享数据同步问题。
synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分 类,synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。
synchronized取得的锁都是对象;每个对象只有一个锁(lock)与之相关联;实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。

问题五:如何处理高并发或列举处理高并发的业务逻辑 1、提高系统的并发能力2、减轻数据库的负担这两种用途其实非常容易理解。由于memcached高性能,所以可以同时服务于更多的连接,大大提高了系统的并发处理的能力。另外,memcached 通常部署在业务逻辑层(前台应用)和存储层(主指数据库)之间,作为数据库和前台应用的数据缓冲,因此可以快速的响应前端的请求,减少对数据库的访问。

问题六:数据库怎样处理高并发 1.用一个标识,在选择那张票的时候先用(Update 表 set 票flag=‘占用了!’ where 票flag=‘未占用’ and ........)这样是保险的,不可能存在并发问题,这就牵扯到sql锁机制问题了,你可以测试一下,其实sql中update是先查询出然后删除再添加,但由于使用了update,过程中就自动加锁了,很方便吧2.加锁。Microsoft® SQL Server™ 2000 使用锁定确保事务完整性和数据库一致性。锁定可以防止用户读取正在由其他用户更改的数据,并可以防止多个用户同时更改相同数据。如果不使用锁定,则数据库中的数据可能在逻辑上不正确,并且对数据的查询可能会产生意想不到的结果。虽然 SQL Server 自动强制锁定,但可以通过了解锁定并在应用程序中自定义锁定来设计更有效的应用程序。

问题七:数据库怎样处理高并发 理论上不限制并发连接数的.就是服务器受硬件的限制.过高的并发是会使服务器无法完成并发任务,而造成服务器死机或者假死机.不过数据库软件可以优化并发连接,使并发持续的时间更短,以减起服务器的负担,但是一台服务器不能完成几十万的并发.

问题八:如何处理大量数据并发操作 如何处理大量数据并发操作

文件缓存,数据库缓存,优化sql,数据分流,数据库表的横向和纵向划分,优化代码结构!

锁述的概
一. 为什么要引入锁
多个用户同时对数据库的并发操作时会带来以下数据不一致的问题:

丢失更新
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统

脏读
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致

不可重复读
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致

二 锁的分类
锁的类别有两种分法:
1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁
MS-SQL Server 使用以下资源锁模式。
锁模式 描述
共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。
排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。
架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。

共享锁
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。

更新锁
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。

排它锁
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。

意向锁
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁......>>

问题九:高并发是什么和如何解决 数据库建立多表关联,关键业务数据字段和查询字段建立索引,对唯一性建立好,同时多任务并发时程序设计时注意数据的合理性检验和用户处理数据有问题时的友好提示见面,建立好的结构文档说明,同时对关键字段的关系型作好记录,有效地设计多表的结构安排,尽量减少数据的冗余,同时又要避免对历史数据的影响,保持良好的数据管理

问题十:如何处理高并发量的HTTP请求 尽量减少页面的HTTP请求,可以提高页面载入速度。减少页面中的元素网页中的的图片、form、flash等等元素都会发出HTTP请求,尽可能的减少页面中非必要的元素,可以减少HTTP请求的次数。

Ⅳ 如何解决高并发问题

使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。

1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。

2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。

3、大存储:可能对数据保存和查询出现问题。

解决方案:

1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)

2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。

Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。

Ⅵ 如何处理大量数据高并发大流量并发操作方案

大数据并发处理解决方案:
1、HTML静态化
效率最高、消耗最小的就是纯静态化的html页面,所以尽可能使网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,无法全部手动去挨个实现,于是出现了常见的信息发布系统CMS,像常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
2、图片服务器分离
对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadMole,保证更高的系统消耗和执行效率。 这一实现起来是比较容易的一现,如果服务器集群操作起来更方便,如果是独立的服务器,新手可能出现上传图片只能在服务器本地的情况下,可以在令一台服务器设置的IIS采用网络路径来实现图片服务器,即不用改变程序,又能提高性能,但对于服务器本身的IO处理性能是没有任何的改变。
3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是需要使用数据库集群或者库表散列。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和ENet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。 负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择。
硬件四层交换
第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。

Ⅶ java高并发,如何解决,什么方式解决,高并发

首先,为防止高并发带来的系统压力,或者高并发带来的系统处理异常,数据紊乱,可以以下几方面考虑:1、加锁,这里的加锁不是指加java的多线程的锁,是指加应用所和数据库锁,应用锁这边通常是使用redis的setnx来做,其次加数据库锁,因为代码中加了应用所,所以数据库不建议加悲观锁(排他锁),一般加乐观锁(通过设置一个seq_no来解决),这两个锁一般能解决了,最后做合理的流控,丢弃一部分请求也是必不可少的

Ⅷ php 高并发解决思路解决方案

php 高并发解决思路解决方案,如何应对网站大流量高并发情况。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出。希望大家喜欢。

一 高并发的概念

在互联网时代,并发,高并发通常是指并发访问。也就是在某个时间点,有多少个访问同时到来。

二 高并发架构相关概念

1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)

2、PV(Page View):综合浏览量,即页面浏览量或者点击量,一个访客在 24 小时内访问的页面数量

--注:同一个人浏览你的网站的同一页面,只记做一次 pv

3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)

4、响应时间:从请求发出到收到响应花费的时间

5、独立访客(UV):一定时间范围内,相同访客多次访问网站,只计算为 1 个独立访客

6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小

7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大小(kb)* 8

三 需要注意点:

1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)

2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】

3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值

4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】

四 优化

1、当 QPS 小于 50 时

优化方案:为一般小型网站,不用考虑优化

2、当 QPS 达到 100 时,遇到数据查询瓶颈

优化方案: 数据库缓存层,数据库的负载均衡

3、当 QPS 达到 800 时, 遇到带宽瓶颈

优化方案:CDN 加速,负载均衡

4、当 QPS 达到 1000 时

优化方案: 做 html 静态缓存

5、当 QPS 达到 2000 时

优化方案: 做业务分离,分布式存储

五、高并发解决方案案例:

1、流量优化

防盗链处理(去除恶意请求)

2、前端优化

(1) 减少 HTTP 请求[将 css,js 等合并]

(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)

(3) 启用浏览器缓存和文件压缩

(4) CDN 加速

(5) 建立独立的图片服务器(减少 I/O)

3、服务端优化

(1) 页面静态化

(2) 并发处理

(3) 队列处理

4、数据库优化

(1) 数据库缓存

(2) 分库分表,分区

(3) 读写分离

(4) 负载均衡

5、web 服务器优化

(1) nginx 反向代理实现负载均衡

(2) lvs 实现负载均衡

Ⅸ 如何处理高并发

处理高并发的六种方法

1:系统拆分,将一个系统拆分为多个子系统,用bbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。

2:缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考的虑考虑你的项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。

3:MQ(消息队列),必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的。

4:分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

5:读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

6:solrCloud:
SolrCloud(solr 云)是Solr提供的分布式搜索方案,可以解决海量数据的 分布式全文检索,因为搭建了集群,因此具备高可用的特性,同时对数据进行主从备份,避免了单点故障问题。可以做到数据的快速恢复。并且可以动态的添加新的节点,再对数据进行平衡,可以做到负载均衡:

Ⅹ 如何提高高性能服务器并发量

消除瓶颈是提高服务器性能和并发能力的唯一途径。 如果你能够消除所有的瓶颈,你就能够最大的发挥硬件性能,让系统的性能和并发数到达最佳。 采用多线程多核编程,使用事件驱动或异步消息机制,尽量减少阻塞和等待操作(如I/O阻塞、同步等待或计时/超时等)。 原理: 1、多线程多核编程,消除cpu瓶颈。 2、采用IOCP或epoll,利用状态监测和通知方式,消除网络I/O阻塞瓶颈。 3、采用事件驱动或异步消息机制,可以消除不必要的等待操作。 4、如果是Linux,可以采用AIO来消除磁盘I/O阻塞瓶颈。 5、在事件驱动框架或异步消息中统一处理timer事件,变同步为异步,而且可以在一个线程处理无数timer事件。 6、深入分析外部的阻塞来源,消除它。 比如数据库查询较慢,导致服务器处理较慢,并发数上不去,这时就要优化数据库性能。 7、如果与某个其他server通信量很大,导致性能下降较多。 可以考虑把这两个server放在一个主机上,采用共享内存的方式来做IPC通信,可以大大提高性能。

阅读全文

与服务器端该如何处理高并发的任务相关的资料

热点内容
python自动化运维之路 浏览:398
eclipsejava教程下载 浏览:985
tita搜索app怎么配置 浏览:261
oracle的连接命令 浏览:1000
基于单片机的恒温水壶 浏览:878
鸿蒙系统文件夹怎么换背景 浏览:294
b站动画算法 浏览:710
程序员每月还房贷 浏览:353
cad墙闭合命令 浏览:168
udp广播可以找到本地服务器地址 浏览:676
加密门卡手机如何复制门禁卡 浏览:266
夜莺的PDF 浏览:707
地方资讯app如何推广 浏览:756
金蝶网络加密连不上 浏览:262
压缩垃圾车的配置部件 浏览:920
视频文件能压缩吗 浏览:71
什么叫美国服务器 浏览:232
阿里云udp服务器源码 浏览:921
小陈程序员理发 浏览:552
白狐问答系统源码下载 浏览:365