导航:首页 > 配服务器 > 上岸云服务器

上岸云服务器

发布时间:2023-08-07 22:30:36

⑴ 大数据、云计算、人工智能之间有什么样的关系

云计算最初的目标是对资源的管理,管理的主要是计算资源,网络资源,存储资源三个方面。想象你有一大堆的服务器,交换机,存储设备,放在你的机房里面,你最想做的事情就是把这些东西统一的管理起来,最好能达到当别人向你请求分配资源的时候(例如1核1G内存,10G硬盘,1M带宽的机器),能够达到想什么时候要就能什么时候要,想要多少就有多少的状态。

这就是所谓的弹性,俗话说就是灵活性。灵活性分两个方面,想什么时候要就什么时候要,这叫做时间灵活性,想要多少就要多少,这叫做空间灵活性。

这个神经元有输入,有输出,输入和输出之间通过一个公式来表示,输入根据重要程度不同(权重),影响着输出。

于是将n个神经元通过像一张神经网络一样连接在一起,n这个数字可以很大很大,所有的神经元可以分成很多列,每一列很多个排列起来,每个神经元的对于输入的权重可以都不相同,从而每个神经元的公式也不相同。当人们从这张网络中输入一个东西的时候,希望输出一个对人类来讲正确的结果。例如上面的例子,输入一个写着2的图片,输出的列表里面第二个数字最大,其实从机器来讲,它既不知道输入的这个图片写的是2,也不知道输出的这一系列数字的意义,没关系,人知道意义就可以了。正如对于神经元来说,他们既不知道视网膜看到的是美女,也不知道瞳孔放大是为了看的清楚,反正看到美女,瞳孔放大了,就可以了。

对于任何一张神经网络,谁也不敢保证输入是2,输出一定是第二个数字最大,要保证这个结果,需要训练和学习。毕竟看到美女而瞳孔放大也是人类很多年进化的结果。学习的过程就是,输入大量的图片,如果结果不是想要的结果,则进行调整。如何调整呢,就是每个神经元的每个权重都向目标进行微调,由于神经元和权重实在是太多了,所以整张网络产生的结果很难表现出非此即彼的结果,而是向着结果微微的进步,最终能够达到目标结果。当然这些调整的策略还是非常有技巧的,需要算法的高手来仔细的调整。正如人类见到美女,瞳孔一开始没有放大到能看清楚,于是美女跟别人跑了,下次学习的结果是瞳孔放大一点点,而不是放大鼻孔。

听起来也没有那么有道理,但是的确能做到,就是这么任性。

神经网络的普遍性定理是这样说的,假设某个人给你某种复杂奇特的函数,f(x):

不管这个函数是什么样的,总会确保有个神经网络能够对任何可能的输入x,其值f(x)(或者某个能够准确的近似)是神经网络的输出。

如果在函数代表着规律,也意味着这个规律无论多么奇妙,多么不能理解,都是能通过大量的神经元,通过大量权重的调整,表示出来的。

这让我想到了经济学,于是比较容易理解了。

我们把每个神经元当成社会中从事经济活动的个体。于是神经网络相当于整个经济社会,每个神经元对于社会的输入,都有权重的调整,做出相应的输出,比如工资涨了,菜价也涨了,股票跌了,我应该怎么办,怎么花自己的钱。这里面没有规律么?肯定有,但是具体什么规律呢?却很难说清楚。

基于专家系统的经济属于计划经济,整个经济规律的表示不希望通过每个经济个体的独立决策表现出来,而是希望通过专家的高屋建瓴和远见卓识总结出来。专家永远不可能知道哪个城市的哪个街道缺少一个卖甜豆腐脑的。于是专家说应该产多少钢铁,产多少馒头,往往距离人民生活的真正需求有较大的差距,就算整个计划书写个几百页,也无法表达隐藏在人民生活中的小规律。

基于统计的宏观调控就靠谱的多了,每年统计局都会统计整个社会的就业率,通胀率,GDP等等指标,这些指标往往代表着很多的内在规律,虽然不能够精确表达,但是相对靠谱。然而基于统计的规律总结表达相对比较粗糙,比如经济学家看到这些统计数据可以总结出长期来看房价是涨还是跌,股票长期来看是涨还是跌,如果经济总体上扬,房价和股票应该都是涨的。但是基于统计数据,无法总结出股票,物价的微小波动规律。

基于神经网络的微观经济学才是对整个经济规律最最准确的表达,每个人对于从社会中的输入,进行各自的调整,并且调整同样会作为输入反馈到社会中。想象一下股市行情细微的波动曲线,正是每个独立的个体各自不断交易的结果,没有统一的规律可循。而每个人根据整个社会的输入进行独立决策,当某些因素经过多次训练,也会形成宏观上的统计性的规律,这也就是宏观经济学所能看到的。例如每次货币大量发行,最后房价都会上涨,多次训练后,人们也就都学会了。

然而神经网络包含这么多的节点,每个节点包含非常多的参数,整个参数量实在是太大了,需要的计算量实在太大,但是没有关系啊,我们有大数据平台,可以汇聚多台机器的力量一起来计算,才能在有限的时间内得到想要的结果。

于是工智能程序作为SaaS平台进入了云计算。

网易将人工智能这个强大的技术,应用于反垃圾工作中,从网易1997年推出邮箱产品开始,我们的反垃圾技术就在不停的进化升级,并且成功应用到各个亿量级用户的产品线中,包括影音娱乐,游戏,社交,电商等产品线。比如网易新闻、博客相册、云音乐、云阅读、有道、BOBO、考拉、游戏等产品。总的来说,反垃圾技术在网易已经积累了19年的实践经验,一直在背后默默的为网易产品保驾护航。现在作为云平台的SaaS服务开放出来。

回顾网易反垃圾技术发展历程,大致上我们可以把他分为三个关键阶段,也基本对应着人工智能发展的三个时期:

第一阶段主要是依赖关键词,黑白名单和各种过滤器技术,来做一些内容的侦测和拦截,这也是最基础的阶段,受限于当时计算能力瓶颈以及算法理论的发展,第一阶段的技术也能勉强满足使用。

第二个阶段时,基于计算机行业里有一些更新的算法,比如说贝叶斯过滤(基于概率论的算法),一些肤色的识别,纹理的识别等等,这些比较优秀成熟的论文出来,我们可以基于这些算法做更好的特征匹配和技术改造,达到更优的反垃圾效果。

最后,随着人工智能算法的进步和计算机运算能力的突飞猛进,反垃圾技术进化到第三个阶段:大数据和人工智能的阶段。我们会用海量大数据做用户的行为分析,对用户做画像,评估用户是一个垃圾用户还是一个正常用户,增加用户体验更好的人机识别手段,以及对语义文本进行理解。还有基于人工智能的图像识别技术,更准确识别是否是色情图片,广告图片以及一些违禁品图片等等。

阅读全文

与上岸云服务器相关的资料

热点内容
服务器部署ip地址 浏览:319
涉密场所周边安全防护距离算法 浏览:670
安卓fpse模拟器怎么设置加速 浏览:944
建行app怎么生成电子签章 浏览:508
获取当前时间javadate 浏览:71
带密码的wifi如何加密 浏览:235
服务器怎么变成阵列 浏览:716
web前端黑客技术pdf 浏览:69
育儿百科全书pdf 浏览:598
任务栏启动命令 浏览:912
编译优化等级区别 浏览:755
unix网关命令 浏览:875
想自己做网站要学编程吗 浏览:597
租个服务器开个私服需要什么 浏览:272
图片换成pdf格式 浏览:663
javamidi编程 浏览:833
android60demo 浏览:69
头条算法怎么复习 浏览:514
灯光控制通道可以编程设置吗 浏览:783
webpack命令行 浏览:807