㈠ linux C里线程未加锁线程可以对全局变量做运算操作吗
可以 啊 。线程就是数据的共享啊。全局变量的访问 。
㈡ linux内核线程死锁或死循环之后如何让系统宕机重启
在开发内核模块或驱动时,如果处理失误,导致内核线程中出现死锁或者死循环,你会发现,除了重启之外,你没有任何可以做的。这时你的输入不起任何作用,终端(不是指远程的ssh工具)只会在那重复的输出类似“BUG: soft lockup - CPU#0 stuck for 67s! [fclustertool:2043]”,更无奈的是你重启之后导致系统挂起的堆栈信息也看不到,你所能做的就是一遍遍的加调试信息,一遍遍的重启机器(这是我的经历,现在想想很傻)。 这种情况你肯定不是第一个遇到的,所以内核肯定会提供处理这种情况的一些机制。但是如何来找到这些机制在哪个地方,或者说根据什么信息去google呢?最有用的就是这句话“BUG: soft lockup - CPU#0 stuck for 67s! [fclustertool:2043]”,因为这句话提供你的信息量很大。首先,这条信息可以输出,说明即使发生死锁或者死循环,还是有代码可以执行。第二,可以通过这个日志信息,找到对应的处理函数,这个函数所在的模块就是用来处理CPU被过度使用时用到的。所以通过这个事情,可以看到内核打印出的只言片语都有可能成为你解决问题的关键,一定要从重视这些信息,从中找出有用的东西。 我经常看的内核版本是官方的2.6.32内核,这个版本中我找到的函数是softlockup_tick(),这个函数在时钟中断的处理函数run_local_timers()中调用。这个函数会首先检查watchdog线程是否被挂起,如果不是watchdog线程,会检查当前占有CPU的线程占有的时间是否超过系统配置的阈值,即softlockup_thresh。如果当前占有CPU的时间过长,则会在系统日志中输出我们上面看到的那条日志。接下来才是最关键的,就是输出模块信息、寄存器信息和堆栈信息,检查softlockup_panic的值是否为1。如果softlockup_panic为1,则调用panic()让内核挂起,输出OOPS信息。代码如下所示:/** This callback runs from the timer interrupt, and checks * whether the watchdog thread has hung or not:*/void softlockup_tick(void){int this_cpu = smp_processor_id(); unsigned long touch_timestamp = per_cpu(touch_timestamp, this_cpu); unsigned long print_timestamp; struct pt_regs *regs = get_irq_regs(); unsigned long now; /* Warn about unreasonable delays: */ if (now <= (touch_timestamp + softlockup_thresh))return; per_cpu(print_timestamp, this_cpu) = touch_timestamp; spin_lock(&print_lock); printk(KERN_ERR BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n, this_cpu, now - touch_timestamp, current-comm, task_pid_nr(current)); print_moles(); print_irqtrace_events(current);if (regs)show_regs(regs);elsemp_stack(); spin_unlock(&print_lock); if (softlockup_panic) panic(softlockup: hung tasks);} 但是softlockup_panic的值默认竟然是0,所以在出现死锁或者死循环的时候,会一直只输出日志信息,而不会宕机,这个真是好坑啊!所以你得手动修改/proc/sys/kernel/softlockup_panic的值,让内核可以在死锁或者死循环的时候可以宕机。如果你的机器中安装了kmp,在重启之后,你会得到一份内核的core文件,这时从core文件中查找问题就方便很多了,而且再也不用手动重启机器了。如果你的内核是标准内核的话,可以通过修改/proc/sys/kernel/softlockup_thresh来修改超时的阈值,如果是CentOS内核的话,对应的文件是/proc/sys/kernel/watchdog_thresh。CentOS内核和标准内核还有一个地方不一样,就是处理CPU占用时间过长的函数,CentOS下是watchdog_timer_fn()函数。 这里介绍下lockup的概念。lockup分为soft lockup和hard lockup。 soft lockup是指内核中有BUG导致在内核模式下一直循环的时间超过10s(根据实现和配置有所不同),而其他进程得不到运行的机会。hard softlockup是指内核已经挂起,可以通过watchdog这样的机制来获取详细信息。这两个概念比较类似。如果你想了解更多关于lockup的信息,可以参考这篇文档: 注意上面说的这些,都是在内核线程中有效,对用户态的死循环没用。如果要监视用户态的死循环,或者内存不足等资源的情况,强烈推荐软件层面的watchdog。具体的操作可以参考下面的文章,都写的非常好,非常实用:
㈢ 线程锁的原理是什么
线程锁的原理:当对象获取锁时,它首先使自己的高速缓存无效,这样就可以保证直接从主内存中装入变量。
同样,在对象释放锁之前,它会刷新其高速缓存,强制使已做的任何更改都出现在主内存中。 这样,会保证在同一个锁上同步的两个线程看到在 synchronized 块内修改的变量的相同值。
一般来说,线程以某种不必让其他线程立即可以看到的方式(不管这些线程在寄存器中、在处理器特定的缓存中,还是通过指令重排或者其他编译器优化),不受缓存变量值的约束。
线程锁在run()函数中使用QMutex实现同步,当多个线程访问共享变量时,使用lock/trylock和unlock将共享变量包裹,以保证同步访问共享变量。
如果不加锁将会在2秒后同时修改num变量,将会导致线程不按照我们的想法执行,当前线程锁定后,其他线程如果遇到共享变量将会等待解锁;
使用QMutex上锁解锁时,当代码提前退出有可能并未执行unlock(),若其他线程采用lock上锁会一直被阻塞,导致内存溢出。
㈣ 在linux中用C语言实现死锁
让我来告诉你答案!设置状态变量lock=0,在占用资源的函数中,设置lock=1;并在处理结束后设lock=0.
比如:
boollock=0;
intscan()
{
while(lock!=0);//循环检测,直到资源释放才执行下面的语句
lock=1;//锁定资源
...//具体的执行扫描的语句
lock=1;//释放资源
return0;
}
这个方法容易实现,但是占用CPU,假定其他线程正在占用扫描仪,那么这个线程就会在自己的时间片内不停的执行while语句直到对方释放扫描仪。由此造成了浪费。
现在流行的做法是通过中断信号来做,那是一本书的内容,建议看linux内核编程方面的书。
㈤ Linux C 怎么实现两个线程同步读取两个内存的数据
在Linux系统中使用C/C++进行多线程编程时,我们遇到最多的就是对同一变量的多线程读写问题,大多情况下遇到这类问题都是通过锁机制来处理,但这对程序的性能带来了很大的影响,当然对于那些系统原生支持原子操作的数据类型来说,我们可以使用原子操作来处理,这能对程序的性能会得到一定的提高。那么对于那些系统不支持原子操作的自定义数据类型,在不使用锁的情况下如何做到线程安全呢?本文将从线程局部存储方面,简单讲解处理这一类线程安全问题的方法。
一、数据类型
在C/C++程序中常存在全局变量、函数内定义的静态变量以及局部变量,对于局部变量来说,其不存在线程安全问题,因此不在本文讨论的范围之内。全局变量和函数内定义的静态变量,是同一进程中各个线程都可以访问的共享变量,因此它们存在多线程读写问题。在一个线程中修改了变量中的内容,其他线程都能感知并且能读取已更改过的内容,这对数据交换来说是非常快捷的,但是由于多线程的存在,对于同一个变量可能存在两个或两个以上的线程同时修改变量所在的内存内容,同时又存在多个线程在变量在修改的时去读取该内存值,如果没有使用相应的同步机制来保护该内存的话,那么所读取到的数据将是不可预知的,甚至可能导致程序崩溃。
如果需要在一个线程内部的各个函数调用都能访问、但其它线程不能访问的变量,这就需要新的机制来实现,我们称之为Static memory local to a thread (线程局部静态变量),同时也可称之为线程特有数据(TSD: Thread-Specific Data)或者线程局部存储(TLS: Thread-Local Storage)。这一类型的数据,在程序中每个线程都会分别维护一份变量的副本(),并且长期存在于该线程中,对此类变量的操作不影响其他线程。如下图:
二、一次性初始化
在讲解线程特有数据之前,先让我们来了解一下一次性初始化。多线程程序有时有这样的需求:不管创建多少个线程,有些数据的初始化只能发生一次。列如:在C++程序中某个类在整个进程的生命周期内只能存在一个实例对象,在多线程的情况下,为了能让该对象能够安全的初始化,一次性初始化机制就显得尤为重要了。——在设计模式中这种实现常常被称之为单例模式(Singleton)。Linux中提供了如下函数来实现一次性初始化:
#include <pthread.h>
// Returns 0 on success, or a positive error number on error
int pthread_once (pthread_once_t *once_control, void (*init) (void));
利用参数once_control的状态,函数pthread_once()可以确保无论有多少个线程调用多少次该函数,也只会执行一次由init所指向的由调用者定义的函数。init所指向的函数没有任何参数,形式如下:
void init (void)
{
// some variables initializtion in here
}
另外,参数once_control必须是pthread_once_t类型变量的指针,指向初始化为PTHRAD_ONCE_INIT的静态变量。在C++0x以后提供了类似功能的函数std::call_once (),用法与该函数类似。使用实例请参考https://github.com/ApusApp/Swift/blob/master/swift/base/singleton.hpp实现。
㈥ linux 如何查看是否有线程死锁
linux和windows不一样,好像没有真正意义上的线程吧,应该是进程模拟的 用这个命令可以看: ps -ef f
㈦ Linux 多线程 死锁问题求解
这么专业的问题还是不要在这问了,白费时间和精力!本人的多线程死锁还一直是个难题,再加上socket通讯的阻塞与非阻塞,非常不好办。
网上也就解决点常识性的,别的还是需要闭门造车的精神多做研究吧
㈧ 关于linux 线程互斥锁的问题,到底怎么锁的
首先初始化的锁为全局变量,为所有线程共享,你一个线程得到锁后自然而然就将其他线程阻塞了嘛,解锁后其他线程才能获取锁,理解哪个锁是一个阻塞性函数就ok,何必纠结呢,具体深挖掘的话就可以参照Linux环境高级编程了!
㈨ linux c 中 errno 是怎么实现线程间的互斥的
你的意思是指线程间对errno这个变量互斥?那就对所有会设置errno的函数调用加锁丫.咔咔!但是这样做效率得多低呀....所以,不要对errno互斥.咔咔!
㈩ linux线程同步的互斥锁(mutex)到底怎么用的》谢谢
互斥锁(mutex) 通过锁机制实现线程间的同步。
1、初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
2、静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
3、动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
4、加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
intpthread_mutex_lock(pthread_mutex*mutex);
intpthread_mutex_trylock(pthread_mutex_t*mutex);
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
intpthread_mutex_unlock(pthread_mutex_t*mutex);
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
intpthread_mutex_destroy(pthread_mutex*mutex);
#include<cstdio>
#include<cstdlib>
#include<unistd.h>
#include<pthread.h>
#include"iostream"
usingnamespacestd;
pthread_mutex_tmutex=PTHREAD_MUTEX_INITIALIZER;
inttmp;
void*thread(void*arg)
{
cout<<"threadidis"<<pthread_self()<<endl;
pthread_mutex_lock(&mutex);
tmp=12;
cout<<"Nowais"<<tmp<<endl;
pthread_mutex_unlock(&mutex);
returnNULL;
}
intmain()
{
pthread_tid;
cout<<"mainthreadidis"<<pthread_self()<<endl;
tmp=3;
cout<<"Inmainfunctmp="<<tmp<<endl;
if(!pthread_create(&id,NULL,thread,NULL))
{
cout<<"Createthreadsuccess!"<<endl;
}
else
{
cout<<"Createthreadfailed!"<<endl;
}
pthread_join(id,NULL);
pthread_mutex_destroy(&mutex);
return0;
}
//编译:g++-othreadtestthread.cpp-lpthread