㈠ 51单片机超声波测距最远距离是多少
51单片机超声波测距最远距离是30m。
提高超声波测试距离的办法有三种:
1、降低超声波的频率;
2、加大超声波发射功率;
3、提高超声波接收的灵敏度,提高放大电路的增益;如果用的是模块,要注意它的技术文档。
51单片机的优点:
51单片机之所以成为经典,成为易上手的单片机主要有以下特点:从内部的硬件到软件有一套完整的按位操作系统,称作位处理器,处理对象不是字或字节而是位。不但能对片内某些特殊功能寄存器的某位进行处理,如传送、置位、清零、测试等,还能进行位的逻辑运算,其功能十分完备,使用起来得心应手。
㈡ 基于单片机的超声波测距一米以上就不灵敏测不了了怎么办
一米以上的话有2个问题,1、随着距离的增大,和发散角的存在,导致信号很快衰减,可能接收到的信号已经衰减的面目全非了。2、距离增大的太多由于超声波发散角的存在导致周围的物体都反射信号,这就导致把有用的信号干扰的面目全非了。
㈢ 基于单片机距离测量原理
超声波经发送头发出去经过 R 米碰到目标,被反射,反射波经过 R 米回到接收头,
从发射到接收经过时间 t ,已知 超声波的传播速度为 v
方程 : R + R = vt
R = vt/2
㈣ 单片机中红外传感器是如何测距的
呵呵,红外光,传播起来是光速,1us传播300m。
利用波速来计算距离,测量出几个纳秒的时间差,使用单片机则是不可能的。
利用电磁波来测距、测速,是利用了变频、差频的原理,前端的电路和器件,都是使用模拟电路中高频电子线路的理论和电路器件。
单片机之类的数字电路根本跟不上这个速度,只能做后期的低速工作,如显示报警等。
其实,用单片机做抢答器,也是蒙人的,误差的概率也是极大的。
㈤ 求个51单片机超声波测距(距离+报警)的c程序
//晶振=8M
//MCU=STC10F04XE
//P0.0-P0.6共阳数码管引脚
//Trig = P1^0
//Echo = P3^2
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
//***********************************************
sfr CLK_DIV = 0x97; //为STC单片机定义,系统时钟分频
//为STC单片机的IO口设置地址定义
sfr P0M1 = 0X93;
sfr P0M0 = 0X94;
sfr P1M1 = 0X91;
sfr P1M0 = 0X92;
sfr P2M1 = 0X95;
sfr P2M0 = 0X96;
//***********************************************
sbit Trig = P1^0; //产生脉冲引脚
sbit Echo = P3^2; //回波引脚
sbit test = P1^1; //测试用引脚
uchar codeSEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
//void pai_xu();
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
CLK_DIV=0X03; //系统时钟为1/8晶振(pdf-45页)
P0M1 = 0; //将io口设置为推挽输出
P1M1 = 0;
P2M1 = 0;
P0M0 = 0XFF;
P1M0 = 0XFF;
P2M0 = 0XFF;
i=0;
flag=0;
test=0;
Trig=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
//ET1=1; //打开定时器1中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0
while(1) //程序循环
{
EA=0;
Trig=1;
delay_20us();
Trig=0; //产生一个20us的脉冲,在Trig引脚
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;
while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断
if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
test= !test; //测试灯变化
}
/// distance[i]=distance_data; //将测量结果的数据放入缓冲区
/// i++;
/// if(i==3)
/// {
/// distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
/// pai_xu();
/// distance_data=distance[1];
a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
/// i=0;
/// }
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0xfd;flag++;break;
case 0x01:P0=shi;P2=0xfe;flag++;break;
case 0x02:P0=;P2=0xfb;flag=0;break;
}
}
//*****************************************************************
/*
//定时器1中断,用做超声波测距计时
timer1() interrupt 3 // 定时器0中断是1号
{
TH1=0;
TL1=0;
}
*/
//******************************************************************
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;
_data=SEG7[_data];
shi_data=SEG7[shi_data];
ge_data =SEG7[ge_data];
EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ ucharbt ;
for(bt=0;bt<100;bt++);
}
/*
void pai_xu()
{ uint t;
if(distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;} /*交换值
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;} /*交换值
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;} /*交换值
}
*/
㈥ 怎么实现测量两点间的距离单片机
如果相差较远可能就要借助GPS(卫星定位),较近可以用超声波。你想测多远的两点?
㈦ 单片机实验搬运小车实现匀加速一段距离停止和匀减速一段距离停止的c语言程序。
varv=0,
g=10;
setInterval(function(){
if(v>=100||v<0){
g=-g;
}
v=v+g;
},100);
类似而已,上述是JS代码
㈧ 单片机测距如何实现
单片机测距离,分为超声波激光测距:基本上是通过激光的发送与接收的时间差来算出距离的。这就要求系统输出一个驱动发光管的电流脉冲,驱动LED发出激光脉冲。然后等待反射回来的光脉冲关闭计时电路。再根据计时的数值,算出距离。激光测距(超声测距类同):基本上是通过激光的发送与接收的时间差来算出距离的。这就要求系统输出一个驱动发光管的电流脉冲,驱动LED发出激光脉冲。然后等待反射回来的光脉冲关闭计时电路。再根据计时的数值,算出距离。
㈨ 51单片机超声波测距的问题
关键这个电路是硬件设计好就可以。做一个40khz的发射电路。。。用2051的一个io控制电源。。。动态扫描led显示
另外再做一个40khz的接收电路。。。二者频率对准。。。接收电路接收到发射信号的时候输出一个电压触发中断,先接通40khz发射电路的工作电压。。。单片机开始计时。。。等侍接收电路触发中断。当有中断。停止计时。。。
这个时间除以2再乘以超声波在空气中传播速度。应该就是等于你要测试的距离。。。
这是参考源代码,可能不全,仅作参考!
#include
#define
unit
unsigned
int
#define
uchar
unsigned
char
sbit
fs="p3"^0;
//发送端;
sbit
h="p3"^7;
sbit
l="p3"^5;
//数码管位选端;
sbit
m="p3"^4;
uchar
tab[16]=\{0x28,0xeb,0x32,0xa2,0xe1,0xa4,0x24,0xea,0x20,0xa0,0x60,0x25,0x3c,0x23,0x34,0x74};//段码;
uchar
u[3];
//显示数组;
unit
count,b;
void
delay(unit
a)
//延时;
\{
unit
m;
for(m=0;m
=300)
\{
b=(17*count)/1000;
u[0]=b%10;
u[1]=(b/10)%10;
u[2]=(b/100)%10;
display();
}
}
void
over()interrupt
1
//t0溢出为无效测量fff;
\{
u[0]=15;
u[1]=15;
u[2]=15;
display();
}
void
main()
\{
fs=0;
delay(8600);
th0=0;
tl0=0;
tmod=0x01;
tr0=1;
ea=1;
et0=1;
pt0=1;
tx();
it0=1;
ie=0x83;
}