1. linux的内核版本的介绍
Linux内核
Linux是最受欢迎的自由电脑操作系统内核。它是一个用C语言写成,符合POSIX标准的类Unix操作系统。Linux最早是由芬兰黑客 Linus Torvalds为尝试在英特尔x86架构上提供自由免费的类Unix操作系统而开发的。该计划开始于1991年,这里有一份Linus Torvalds当时在Usenet新闻组comp.os.minix所登载的贴子,这份着名的贴子标志着Linux计划的正式开始。
在计划的早期有一些Minix 黑客提供了协助,而今天全球无数程序员正在为该计划无偿提供帮助。
技术上说Linux是一个内核。“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于Linux内核的完整操作系统叫作Linux操作系统,或是GNU/Linux。
具体看http://blog.csdn.net/huahuamoon/archive/2008/04/08/2259820.aspx
2. Linux内核升级,一直不成功,求高手帮忙,先谢谢了。
你的这个内核升级方法应该是很老的版本,其实错误就在你改的那个连接上,你改了之后,Makefile就没办法继续编译了,为什么要改链接呢?完全没必要
3. 怎么修改linux 内核主频 csdn
修改/etc/sysctl.conf,可参考如下参数:
net.ipv4.ip_local_port_range=102465000
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=40968738016777216
net.ipv4.tcp_wmem=40966553616777216
net.ipv4.tcp_fin_timeout=10
net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_timestamps=0
net.ipv4.tcp_window_scaling=0
net.ipv4.tcp_sack=0
net.core.netdev_max_backlog=50000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn=262144
net.ipv4.tcp_syncookies=0
net.ipv4.tcp_max_orphans=262144
net.ipv4.tcp_max_syn_backlog=262144
net.ipv4.tcp_synack_retries=2
net.ipv4.tcp_syn_retries=2
#net.ipv4.ip_conntrack_max=10240
4. linux内核调试的主要方法
1。printk ,以及系统日志。阅读源码,想象代码运行的情况,结合打印的信息,推测问题所在。
2。内核调试器,例如 Kgdb 。
3。user mode linux 。
4。在虚拟机上调试。例如 Bochs 。
5. arm linux内核启动不了
机器码的问题,uboot的机器码和linux内核的机器码不匹配
6. 深入理解linux内核 哪些是过时的 csdn
= =,, 我觉得还是去看看早期版本的源码先, 我自己在看0.11的源码, 虽然跟刚发行的3.0 比起来很不完整, 但是基本功能都在了, 其他的功能看完了0.11的源码再说吧, 看看每次更新的不同的地方就行了, 饭要一口一口吃不是。
7. linux内核主要由哪几个部分组成
一个完整的Linux内核一般由5部分组成,它们分别是内存管理、进程管理、进程间通信、虚拟文件系统和网络接口。
1、内存管理
内存管理主要完成的是如何合理有效地管理整个系统的物理内存,同时快速响应内核各个子系统对内存分配的请求。
Linux内存管理支持虚拟内存,而多余出的这部分内存就是通过磁盘申请得到的,平时系统只把当前运行的程序块保留在内存中,其他程序块则保留在磁盘中。在内存紧缺时,内存管理负责在磁盘和内存间交换程序块。
2、进程管理
进程管理主要控制系统进程对CPU的访问。当需要某个进程运行时,由进程调度器根据基于优先级的调度算法启动新的进程。:Linux支持多任务运行,那么如何在一个单CPU上支持多任务呢?这个工作就是由进程调度管理来实现的。
在系统运行时,每个进程都会分得一定的时间片,然后进程调度器根据时间片的不同,选择每个进程依次运行,例如当某个进程的时间片用完后,调度器会选择一个新的进程继续运行。
由于切换的时间和频率都非常的快,由此用户感觉是多个程序在同时运行,而实际上,CPU在同一时间内只有一个进程在运行,这一切都是进程调度管理的结果。
3、进程间通信
进程间通信主要用于控制不同进程之间在用户空间的同步、数据共享和交换。由于不用的用户进程拥有不同的进程空间,因此进程间的通信要借助于内核的中转来实现。
一般情况下,当一个进程等待硬件操作完成时,会被挂起。当硬件操作完成,进程被恢复执行,而协调这个过程的就是进程间的通信机制。
4、虚拟文件系统
Linux内核中的虚拟文件系统用一个通用的文件模型表示了各种不同的文件系统,这个文件模型屏蔽了很多具体文件系统的差异,使Linux内核支持很多不同的文件系统。
这个文件系统可以分为逻辑文件系统和设备驱动程序:逻辑文件系统指Linux所支持的文件系统,例如ext2、ext3和fat等;设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。
5、网络接口
网络接口提供了对各种网络标准的实现和各种网络硬件的支持。网络接口一般分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。
网络设备驱动程序则主要负责与硬件设备进行通信,每一种可能的网络硬件设备都有相应的设备驱动程序。
(7)linux内核csdn扩展阅读:
Linux 操作系统的诞生、发展和成长过程始终依赖着五个重要支柱:UNIX操作系统、MINIX操作系统、GNU计划、POSIX标准和Internet 网络。
1981 年IBM公司推出微型计算机IBM PC。
1991年,GNU计划已经开发出了许多工具软件,最受期盼的GNU C编译器已经出现,GNU的操作系统核心HURD一直处于实验阶段,没有任何可用性,实质上也没能开发出完整的GNU操作系统,但是GNU奠定了Linux用户基础和开发环境。
1991年初,林纳斯·托瓦兹开始在一台386sx兼容微机上学习minix操作系统。1991年4月,林纳斯·托瓦兹开始酝酿并着手编制自己的操作系统。
1991 年4 月13 日在comp.os.minix 上发布说自己已经成功地将bash 移植到了minix 上,而且已经爱不释手、不能离开这个shell软件了。
1993年,大约有100余名程序员参与了Linux内核代码编写/修改工作,其中核心组由5人组成,此时Linux 0.99的代码大约有十万行,用户大约有10万左右。
1994年3月,Linux1.0发布,代码量17万行,当时是按照完全自由免费的协议发布,随后正式采用GPL协议。
1995年1月,Bob Young创办了RedHat(小红帽),以GNU/Linux为核心,集成了400多个源代码开放的程序模块,搞出了一种冠以品牌的Linux,即RedHat Linux,称为Linux"发行版",在市场上出售。这在经营模式上是一种创举。
2001年1月,Linux 2.4发布,它进一步地提升了SMP系统的扩展性,同时它也集成了很多用于支持桌面系统的特性:USB,PC卡(PCMCIA)的支持,内置的即插即用,等等功能。
2003年12月,Linux 2.6版内核发布,相对于2.4版内核2.6在对系统的支持都有很大的变化。
2004年的第1月,SuSE嫁到了Novell,SCO继续顶着骂名四处强行“化缘”, Asianux, MandrakeSoft也在五年中首次宣布季度赢利。3月,SGI宣布成功实现了Linux操作系统支持256个Itanium 2处理器。
8. linux 用户进程 可以抢占内核进程吗
1.2.1 调度过程中关闭内核抢占
我们在上一篇linux内核主调度器schele(文章链接, CSDN, Github)中在分析主调度器的时候, 我们会发现内核在进行调度之前都会通过preempt_disable关闭内核抢占, 而在完成调度工作后, 又会重新开启内核抢占
参见主调度器函数schele
do {
preempt_disable(); /* 关闭内核抢占 */
__schele(false); /* 完成调度 */
sched_preempt_enable_no_resched(); /* 开启内核抢占 */
} while (need_resched()); /* 如果该进程被其他进程设置了TIF_NEED_RESCHED标志,则函数重新执行进行调度 */123456123456
这个很容易理解, 我们在内核完成调度器过程中, 这时候如果发生了内核抢占, 我们的调度会被中断, 而调度却还没有完成, 这样会丢失我们调度的信息.
1.2.2 调度完成检查need_resched看是否需要重新调度
而同样我们可以看到, 在调度完成后, 内核会去判断need_resched条件, 如果这个时候为真, 内核会重新进程一次调度.
这个的原因, 我们在前一篇博客中, 也已经说的很明白了,
内核在thread_info的flag中设置了一个标识来标志进程是否需要重新调度, 即重新调度need_resched标识TIF_NEED_RESCHED, 内核在即将返回用户空间时会检查标识TIF_NEED_RESCHED标志进程是否需要重新调度,如果设置了,就会发生调度, 这被称为用户抢占
2 非抢占式和可抢占式内核
为了简化问题,我使用嵌入式实时系统uC/OS作为例子
首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样
多任务系统中, 内核负责管理各个任务, 或者说为每个任务分配CPU时间, 并且负责任务之间的通讯.
内核提供的基本服务是任务切换. 调度(Scheler),英文还有一词叫dispatcher, 也是调度的意思.
这是内核的主要职责之一, 就是要决定该轮到哪个任务运行了. 多数实时内核是基于优先级调度法的, 每个任务根据其重要程度的不同被赋予一定的优先级. 基于优先级的调度法指,CPU总是让处在就绪态的优先级最高的任务先运行. 然而, 究竟何时让高优先级任务掌握CPU的使用权, 有两种不同的情况, 这要看用的是什么类型的内核, 是不可剥夺型的还是可剥夺型内核
2.1 非抢占式内核
非抢占式内核是由任务主动放弃CPU的使用权
非抢占式调度法也称作合作型多任务, 各个任务彼此合作共享一个CPU. 异步事件还是由中断服务来处理. 中断服务可以使一个高优先级的任务由挂起状态变为就绪状态.
但中断服务以后控制权还是回到原来被中断了的那个任务, 直到该任务主动放弃CPU的使用权时,那个高优先级的任务才能获得CPU的使用权。非抢占式内核如下图所示.
非抢占式内核的优点有
中断响应快(与抢占式内核比较);
允许使用不可重入函数;
几乎不需要使用信号量保护共享数据, 运行的任务占有CPU,不必担心被别的任务抢占。这不是绝对的,在打印机的使用上,仍需要满足互斥条件。
非抢占式内核的缺点有
任务响应时间慢。高优先级的任务已经进入就绪态,但还不能运行,要等到当前运行着的任务释放CPU
非抢占式内核的任务级响应时间是不确定的,不知道什么时候最高优先级的任务才能拿到CPU的控制权,完全取决于应用程序什么时候释放CPU
2.2 抢占式内核
使用抢占式内核可以保证系统响应时间. 最高优先级的任务一旦就绪, 总能得到CPU的使用权。当一个运行着的任务使一个比它优先级高的任务进入了就绪态, 当前任务的CPU使用权就会被剥夺,或者说被挂起了,那个高优先级的任务立刻得到了CPU的控制权。如果是中断服务子程序使一个高优先级的任务进入就绪态,中断完成时,中断了的任务被挂起,优先级高的那个任务开始运行。
抢占式内核如下图所示
抢占式内核的优点有
使用抢占式内核,最高优先级的任务什么时候可以执行,可以得到CPU的使用权是可知的。使用抢占式内核使得任务级响应时间得以最优化。
抢占式内核的缺点有:
不能直接使用不可重入型函数。调用不可重入函数时,要满足互斥条件,这点可以使用互斥型信号量来实现。如果调用不可重入型函数时,低优先级的任务CPU的使用权被高优先级任务剥夺,不可重入型函数中的数据有可能被破坏。
3 linux用户抢占
3.1 linux用户抢占
当内核即将返回用户空间时, 内核会检查need_resched是否设置, 如果设置, 则调用schele(),此时,发生用户抢占.
3.2 need_resched标识
内核如何检查一个进程是否需要被调度呢?
内核在即将返回用户空间时检查进程是否需要重新调度,如果设置了,就会发生调度, 这被称为用户抢占, 因此内核在thread_info的flag中设置了一个标识来标志进程是否需要重新调度, 即重新调度need_resched标识TIF_NEED_RESCHED
并提供了一些设置可检测的函数
函数
描述
定义
set_tsk_need_resched 设置指定进程中的need_resched标志 include/linux/sched.h, L2920
clear_tsk_need_resched 清除指定进程中的need_resched标志 include/linux/sched.h, L2926
test_tsk_need_resched 检查指定进程need_resched标志 include/linux/sched.h, L2931
而我们内核中调度时常用的need_resched()函数检查进程是否需要被重新调度其实就是通过test_tsk_need_resched实现的, 其定义如下所示
// http://lxr.free-electrons.com/source/include/linux/sched.h?v=4.6#L3093
static __always_inline bool need_resched(void)
{
return unlikely(tif_need_resched());
}
// http://lxr.free-electrons.com/source/include/linux/thread_info.h?v=4.6#L106
#define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED)1234567812345678
3.3 用户抢占的发生时机(什么时候需要重新调度need_resched)
一般来说,用户抢占发生几下情况:
从系统调用返回用户空间;
从中断(异常)处理程序返回用户空间
从这里我们可以看到, 用户抢占是发生在用户空间的抢占现象.
更详细的触发条件如下所示, 其实不外乎就是前面所说的两种情况: 从系统调用或者中断返回用户空间
时钟中断处理例程检查当前任务的时间片,当任务的时间片消耗完时,scheler_tick()函数就会设置need_resched标志;
信号量、等到队列、completion等机制唤醒时都是基于waitqueue的,而waitqueue的唤醒函数为default_wake_function,其调用try_to_wake_up将被唤醒的任务更改为就绪状态并设置need_resched标志。
设置用户进程的nice值时,可能会使高优先级的任务进入就绪状态;
改变任务的优先级时,可能会使高优先级的任务进入就绪状态;
新建一个任务时,可能会使高优先级的任务进入就绪状态;
对CPU(SMP)进行负载均衡时,当前任务可能需要放到另外一个CPU上运行
4 linux内核抢占
4.1 内核抢占的概念
对比用户抢占, 顾名思义, 内核抢占就是指一个在内核态运行的进程, 可能在执行内核函数期间被另一个进程取代.
4.2 为什么linux需要内核抢占
linux系统中, 进程在系统调用后返回用户态之前, 或者是内核中某些特定的点上, 都会调用调度器. 这确保除了一些明确指定的情况之外, 内核是无法中断的, 这不同于用户进程.
如果内核处于相对耗时的操作中, 比如文件系统或者内存管理相关的任务, 这种行为可能会带来问题. 这种情况下, 内核代替特定的进程执行相当长的时间, 而其他进程无法执行, 无法调度, 这就造成了系统的延迟增加, 用户体验到”缓慢”的响应. 比如如果多媒体应用长时间无法得到CPU, 则可能发生视频和音频漏失现象.
在编译内核时如果启用了对内核抢占的支持, 则可以解决这些问题. 如果高优先级进程有事情需要完成, 那么在启用了内核抢占的情况下, 不仅用户空间应用程序可以被中断, 内核也可以被中断,
linux内核抢占是在Linux2.5.4版本发布时加入的, 尽管使内核可抢占需要的改动特别少, 但是该机制不像抢占用户空间进程那样容易实现. 如果内核无法一次性完成某些操作(例如, 对数据结构的操作), 那么可能出现静态条件而使得系统不一致.
内核抢占和用户层进程被其他进程抢占是两个不同的概念, 内核抢占主要是从实时系统中引入的, 在非实时系统中的确也能提高系统的响应速度, 但也不是在所有情况下都是最优的,因为抢占也需要调度和同步开销,在某些情况下甚至要关闭内核抢占, 比如前面我们将主调度器的时候, linux内核在完成调度的过程中是关闭了内核抢占的.
内核不能再任意点被中断, 幸运的是, 大多数不能中断的点已经被SMP实现标识出来了. 并且在实现内核抢占时可以重用这些信息. 如果内核可以被抢占, 那么单处理器系统也会像是一个SMP系统
4.3 内核抢占的发生时机
要满足什么条件,kernel才可以抢占一个任务的内核态呢?
没持有锁。锁是用于保护临界区的,不能被抢占。
Kernel code可重入(reentrant)。因为kernel是SMP-safe的,所以满足可重入性。
内核抢占发生的时机,一般发生在:
当从中断处理程序正在执行,且返回内核空间之前。当一个中断处理例程退出,在返回到内核态时(kernel-space)。这是隐式的调用schele()函数,当前任务没有主动放弃CPU使用权,而是被剥夺了CPU使用权。
当内核代码再一次具有可抢占性的时候,如解锁(spin_unlock_bh)及使能软中断(local_bh_enable)等, 此时当kernel code从不可抢占状态变为可抢占状态时(preemptible again)。也就是preempt_count从正整数变为0时。这也是隐式的调用schele()函数
如果内核中的任务显式的调用schele(), 任务主动放弃CPU使用权
如果内核中的任务阻塞(这同样也会导致调用schele()), 导致需要调用schele()函数。任务主动放弃CPU使用权
内核抢占,并不是在任何一个地方都可以发生,以下情况不能发生
内核正进行中断处理。在Linux内核中进程不能抢占中断(中断只能被其他中断中止、抢占,进程不能中止、抢占中断),在中断例程中不允许进行进程调度。进程调度函数schele()会对此作出判断,如果是在中断中调用,会打印出错信息。
内核正在进行中断上下文的Bottom Half(中断下半部,即软中断)处理。硬件中断返回前会执行软中断,此时仍然处于中断上下文中。如果此时正在执行其它软中断,则不再执行该软中断。
内核的代码段正持有spinlock自旋锁、writelock/readlock读写锁等锁,处干这些锁的保护状态中。内核中的这些锁是为了在SMP系统中短时间内保证不同CPU上运行的进程并发执行的正确性。当持有这些锁时,内核不应该被抢占。
内核正在执行调度程序Scheler。抢占的原因就是为了进行新的调度,没有理由将调度程序抢占掉再运行调度程序。
内核正在对每个CPU“私有”的数据结构操作(Per-CPU date structures)。在SMP中,对于per-CPU数据结构未用spinlocks保护,因为这些数据结构隐含地被保护了(不同的CPU有不一样的per-CPU数据,其他CPU上运行的进程不会用到另一个CPU的per-CPU数据)。但是如果允许抢占,但一个进程被抢占后重新调度,有可能调度到其他的CPU上去,这时定义的Per-CPU变量就会有问题,这时应禁抢占。