⑴ android或iOS系统中如何用陀螺仪来防照抖动
默认开启的,具体可进相机设置中查找,不同机型不太一样。
⑵ android如何实现陀螺仪 sensor 在 android 吗
千锋扣丁学堂Android开发为您解答:
sensors.h中还定义了其他各种sensor。要实现的就是这两个:
#define SENSOR_TYPE_MAGNETIC_FIELD 2
#define SENSOR_TYPE_ORIENTATION 3
在/hardware/sensors/sensors.cpp 中添加对MAGNETIC_FIELD和ORIENTATION 的支持
[cpp] view plain
//加入需要的宏定义
#define ID_BASE SENSORS_HANDLE_BASE
#define ID_ACCELERATION (ID_BASE+0)
#define ID_MAGNETIC_FIELD (ID_BASE+1)
#define ID_ORIENTATION (ID_BASE+2)
#define S_HANDLE_ACCELEROMETER (1<<ID_ACCELERATION)
#define S_HANDLE_MAGNETIC_FIELD (1<<ID_MAGNETIC_FIELD)
#define S_HANDLE_ORIENTATION (1<<ID_ORIENTATION)
#define SENSORS_NUM 4
#define SUPPORTED_SENSORS ((1<<NUM_SENSORS)-1)
//在 sensor_t sensors_list[] 中添加两个sensor的信息,
//这些只是一些Sensor的信息,应用程序可以获取到。
#ifdef MAGNETIC_FIELD
{
name : "XXX 3-axis Magnetic field sensor",
vendor : "XXX company",
version : 1,
handle : S_HANDLE_MAGNETIC_FIELD,
type : SENSOR_TYPE_MAGNETIC_FIELD,
maxRange : 600.0f,//最大范围
resolution : 30.0f,//最小分辨率
power : 6.7f,//这个不太懂
},
#endif
#ifdef ORIENTATION
{
name: "XXX Orientation sensor",
vendor: "XXX company",
version: 1,
handle: S_HANDLE_ORIENTATION,
type: SENSOR_TYPE_ORIENTATION,
maxRange: 360,
resolution: 0.1,
power: 20,
},
#endif
//定义一个结构来保存orientation的信息
static struct orientation{
float azimuth;
float pitch;
float roll;
}orientation;
//在 control__open_data_source()函数中打开设备
static native_handle_t*
control__open_data_source(struct sensors_control_device_t *dev)
{
SensorControl* ctl = (void*)dev;
native_handle_t* handle;
int fd_m = open (MAGNETIC_DATA_DEVICE, O_RDONLY);
LOGD ("Open Magnetic Data source: %d, %d/n", fd_m, errno);
if (fd_m>= 0)
{
dev->fd[ID_MAGNETIC_FIELD] = p(fd_m);
}
return handle;
}
//实现数据的打开和关闭函数
static int
data__data_open(struct sensors_data_device_t *dev, native_handle_t* handle)
{
struct sensors_data_context_t *dev;
dev = (struct sensors_data_context_t *)device;
for(int i=0 ;i<SENSORS_NUM; i++)
{
dev->fd[i] = p(handle->data[i]);
}
native_handle_close(handle);
native_handle_delete(handle);
return 0;
}
static int
data__data_close(struct sensors_data_device_t *dev)
{
struct sensors_data_context_t *dev;
dev = (struct sensors_data_context_t *)device;
for(int i=0 ;i<SENSORS_NUM; i++)
{
if (dev->fd[i] >= 0)
{
close(dev->fd[i]);
}
dev->fd[i] = -1;
}
return 0;
}
//最关键的poll函数
static int
data__poll(struct sensors_data_device_t *dev, sensors_data_t* values)
{
SensorData* data = (void*)dev;
int fd = data->events_fd;
//判断设备是否打开
if(dev->fd[ID_MAGNETIC_FIELD] < 0)
{
LOGD("In %s dev[%d] is not open!/n",__FUNCTION__ ,ID_MAGNETIC_FIELD);
return -1;
}
pollfd pfd[SENSORS_NUM] =
{
//省略其他sensor代码
{
fd: dev->fd[ID_MAGNETIC_FIELD],
events: POLLIN,
revents: 0
},
//省略其他sensor代码
};
int err = poll (pfd, SENSORS_NUM, s_timeout);
unsigned int mask = SUPPORTED_SENSORS;
static unsigned int poll_flag=0;
if(poll_flag==0)
{
poll_flag = mask;
}
//省略其他sensor
if(poll_flag&(1<<ID_MAGNETIC_FIELD))
{
if((pfd[ID_MAGNETIC_FIELD].revents&POLLIN) == POLLIN)
{
char rawData[6];
err = read (dev->fd[ID_MAGNETIC_FIELD], &rawData, sizeof(rawData));
if(err<0)
{
LOGE("read magnetic field ret:%d errno:%d/n", err, errno);
return err;
}
struct timespec t;
clock_gettime(CLOCK_REALTIME, &t);
data->time = timespec_to_ns(&t);
data->sensor = SENSOR_TYPE_MAGNETIC_FIELD;
data->magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
//上报的数据单位要转换成 uTesla
data->magnetic.x = ( (rawData[1] << 8 ) | rawData[0])/ MAGNETIC_CONVERT;
data->magnetic.y = ( (rawData[3] << 8 ) | rawData[2])/ MAGNETIC_CONVERT;
data->magnetic.z = ( (rawData[5] << 8 ) | rawData[4])/ MAGNETIC_CONVERT;
//把陀螺仪需要的数据计算出来,用atan2(),头文件要加上#include <math.h>
float azimuth = atan2( (float)(data->magnetic.x ),(float)(data->magnetic.y) );
if(azimuth<0)
{
azimuth = 360 - fabs(azimuth*180/PI);
}
else
{
azimuth = azimuth*180/PI;
}
orientation.azimuth = 360-azimuth;
//rotation around the X axis.+180~-180 degree
orientation.pitch = atan2( (float)(data->magnetic.y ),(float)(data->magnetic.z)
)*180/PI;
//rotation around the Y axis +90~-90 degree
float roll = atan2( (float)(data->magnetic.x ),(float)(data->magnetic.z) )
*180/PI;
if (roll > 90)
{
roll = -(180.0-roll);
}
else if (roll < -90)
{
roll = 180 + roll;
}
orientation.roll = roll;
}
return S_HANDLE_MAGNETIC_FIELD;
}
if(poll_flag&(1<<ID_MAGNETIC_FIELD))
{
//数据已经计算好了直接上报就行
struct timespec t;
clock_gettime(CLOCK_REALTIME, &t);
data->time = timespec_to_ns(&t);
data->sensor = SENSOR_TYPE_ORIENTATION;
data->orientation.azimuth = orientation.azimuth;
data->orientation.pitch = orientation.pitch;
data->orientation.roll = orientation.roll;
poll_flag &= ~(1<<ID_ORIENTATION);
return S_HANDLE_ORIENTATION;
}
}
⑶ 安卓的陀螺仪和重力感应是什么
陀螺仪
又叫角速度传感器,是不同于加速度计(G-sensor)的,他的测量物理量是偏转,倾斜时的转动角速度。在手机上,仅用加速度计没办法测量或重构出完整的3D动作,测不到转动的动作的,G-sensor只能检测轴向的线性动作。但陀螺仪则可以对转动,偏转的动作做很好的测量,这样就可以精确分析判断出使用者的实际动作。而后根据动作,可以对手机做相应的操作
重力感应,是指手机对地心引力的感应
⑷ android软件开发,指南针校准对陀螺仪有依赖吗
没有,指南针底层的校准只依赖指南针本身的报值和ACC(加速度传感器)的报值。
如果你手头有你的指南针的内核源码(包括.a文件中的函数),我可以详细说给你
⑸ android系统平台上支持的传感器中,陀螺仪属于什么传感器
Android系统支持多种传感器,包括加速度传感器、磁力域传感器、方向传感器、陀螺仪、光线传感器、压力传感器、温度传感器、接近传感器,一般手
机都支持加速度传感器、磁力域传感器、方向传感器、光线传感器、接近传感器,也有一些比较高端的手机支持陀螺仪。
⑹ 安卓手机如何校准陀螺仪
安卓手机校准陀螺仪的步骤如下:
1、在手机界面找到设置选项,点击打开进入。
⑺ 有没有安卓陀螺仪测速软件
原理来说的话,陀螺仪是测角速度的,加速度计是测线加速度的,要测速度的话,只能用数值积分,但是以手机上陀螺仪加速度计的精度的话,积分得到的速度误差只会更大
⑻ 如何在android的驱动程序中对加速度传感器的数据进行方向和坐标的转
一部智能手机或便携设备应具有Wi-Fi 和互联网功能,能够运行应用软件等诸多特征,而且一定会具有内置传感器。高端智能手机可能集成接近传感器,环境光传感器,3
轴加速度计,以及磁力计等多种传感器。 Android 2.3
添加了一些支持多种新型传感器的API,包括陀螺仪、旋转向量、线性加速度、重力和气压传感器等。应用软件可以使用这些新型传感器,将它们组合起来,就可以实现高精确度的高级运动检测功能。
3 轴加速度计或低g 值传感器是Android API
支持的传感器之一,具有特定的坐标系统,可以给应用程序提供标准的接口数据。坐标空间的定义与手机屏幕的默认方向有关,如图1所示。
图
1. 3 轴加速度计的Android 坐标系统
在Android 坐标系统中,坐标原点位于屏幕的左下角,X 轴水平指向右侧,Y 轴垂直指向顶部,Z
轴指向屏幕前方。在该系统中,屏幕后方的坐标具有负的Z 轴值。Android 加速度计数据定义为:
Sensor.TYPE_ACCELEROMETER
所有数值都采用SI
标准单位(m/s2),测量手机的加速度值,并减去重力加速度分量。
values[0]:x 轴上的加速度值减去Gx
values[1]:y
轴上的加速度值减去Gy
values[2]:z 轴上的加速度值减去Gz
例如,当设备平放在桌上并推着其左侧向右移动时,x
轴加速度值为正。当设备平放在桌上时,加速度值为+9.81,这是用设备的加速度值 (0 m/s2) 减去重力加速度值 (-9.81 m/s2)得到的。
当设备平放在桌上放,并以加速度A m/s2 朝天空的方向推动时,加速度值等于A+9.81,这是用设备加速度值(+A
m/s2)减去重力加速度值(-9.81 m/s2)得到的。
表 1
列出了与设备的各个位置相对应的传感器的加速度值读数。用户可以用下表检查加速度计的方向与系统坐标是否一致。
在 Android HAL 文件中改变 X、Y 和Z 轴的方向
在 HAL
文件中,会有一组宏定义,用于把从传感器中读取的加速度数据转换为标准单位(m/s2)。如以下代码:
// conversion of
acceleration data to SI units (m/s^2)
#define CONVERT_A (GRAVITY_EARTH /
LSG)
#define CONVERT_A_X (-CONVERT_A)
#define CONVERT_A_Y (CONVERT_A)
#define CONVERT_A_Z (CONVERT_A)
在这个宏定义中,常量GRAVITY_EARTH
是一个标准重力加速度值,即9.81m/s2,LSG为一个重力加速度值的最小有效计数值,例如,MMA8452
在正常模式下的读数为1024。因此,CONVERT_A 用于把从加速度传感器中读取的数据,从数字读数转换为标准重力加速度单位。
通过分别修改CONVERT_A_X、CONVERT_A_Y 和CONVERT_A_Z,我们可以轻松地改变X、Y 和Z
轴的方向。如果该轴的方向与系统定义相反,可以使用(-CONVERT_A)来改变其方向。如果方向一致,就使用(CONVERT_A),则保持方向不变。
这个宏定义位于FSL Android 9 (Android 2.2)驱动程序的HAL文件sensor.c 中。对于FSLAndroid 10
(Android 2.3),您可以在’libsensors’文件夹的HAL 文件Sensor.h 中找到它。
在 Android 2.2 HAL
文件中交换X 轴和Y 轴
在某些情况下,X 和Y 轴必须进行交换,以便使传感器数据的坐标与系统坐标保持一致。
对于 FSL
Android 9 (Android 2.2)驱动程序来说,X 轴和Y 轴的交换非常简单。首先,在HAL 文件sensor.c
中,在函数sensor_poll() 中找到以下代码:
switch (event.code) {
case ABS_X:
sSensors.acceleration.x = event.value * CONVERT_A_X;
break;
case
ABS_Y:
sSensors.acceleration.y = event.value * CONVERT_A_Y;
break;
case ABS_Z:
sSensors.acceleration.z = event.value * CONVERT_A_Z;
break;
}
然后,根据如下所示修改代码:
switch (event.code) {
case
ABS_X:
sSensors.acceleration.y = event.value * CONVERT_A_Y;
break;
case ABS_Y:
sSensors.acceleration.x = event.value * CONVERT_A_X;
break;
case ABS_Z:
sSensors.acceleration.z = event.value *
CONVERT_A_Z;
break;
}
在 Android 2.3 的HAL 文件中交换X 轴和Y 轴
在
Android 2.3 的HAL 文件中交换X 轴和Y 轴会更加复杂些,因为它具有更复杂的HAL文件结构。所有HAL
文件都位于文件夹‘libsensors’中。文件AccelSensor.cpp 中的两个函数需要修改。
首先,修改函数AccelSensor()的代码,如下所示:
if
(accel_is_sensor_enabled(SENSOR_TYPE_ACCELEROMETER)) {
mEnabled |=
1<<accelerometer; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X),
&absinfo)) {
mPendingEvents[Accelerometer].acceleration.y =
absinfo.value * CONVERT_A_Y;
}
if (!ioctl(data_fd,
EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z;
}
}
然后,修改函数processEvent()的代码,如下所示:
void
AccelSensor::processEvent(int code, int value)
{
switch (code) {
case EVENT_TYPE_ACCEL_X:
mPendingMask |= 1<<accelerometer; mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y;
break;
case EVENT_TYPE_ACCEL_Y:
mPendingMask |= 1<<accelerometer; mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X;
break;
case EVENT_TYPE_ACCEL_Z:
mPendingMask |= 1<<accelerometer; mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z;
break;
}
}
完成后,X 轴和Y 轴的数据就互相交换了。
在 Kernel 驱动文件中交换X 轴和Y 轴
X 轴和Y 轴的数据交换可以在底层的Linux 驱动中,在刚开始读取传感器数据时实施。通过这种方法,无论传感器芯片以何种方式安装在PCB
中,或者使用各种不同类型的传感器,HAL 文件都可以保持一致。
对于 Android 2.2 和2.3
来说,执行该操作的最便捷的方式是修改函数report_abs()中的代码。在该函数中,传感器数据通过调用函数mma8452_read_data()读取,如下所示(当使用的传感器为MMA8452Q
时):
if (mma8452_read_data(&x,&y,&z) != 0) {
//DBG("mma8452 data read failed
");
return; }
X 轴和Y
轴可以通过以下方式轻松交换:
if (mma8452_read_data(&y,&x,&z) != 0) {
//DBG("mma8452 data read failed
");
return; }
对于 Android
2.2,MMA8452 的Kernel 驱动文件为mma8452.c;对于Android 2.3,驱动文件是‘hwmon’文件夹中的mxc_mma8452.c。
在 Kernel 驱动文件中改变 X、Y 和Z 轴的方向
传感器数据的方向也可以在Kernel
驱动文件中更改。以下带有注释的语句可以添加到函数report_abs()中,从而改变数据方向:
if
(mma8452_read_data(&y,&x,&z) != 0) {
//DBG("mma8452 data read
failed
");
return;
}
x *= -1; //Reverse X direction
y *= -1;
//Reverse Y direction
z *= -1; //Reverse Z direction
input_report_abs(mma8452_idev->input, ABS_X, x);
input_report_abs(mma8452_idev->input, ABS_Y, y);
input_report_abs(mma8452_idev->input, ABS_Z, z);
input_sync(mma8452_idev->input);
总结
Android
系统已经为加速度计定义了坐标系统,因此用户必须转换从实际传感器中读取的数据,从而与其保持一致。无论是否需要转换,都应检查X、Y 和Z
轴的方向以及X-Y轴坐标。我们可以更改HAL 文件或Kernel 驱动文件来改变轴的方向,或交换X 和Y 轴,但是不要同时修改HAL 文件和Kernel 驱动。
找找
⑼ 安卓手机陀螺仪有什么用处,推荐能用到陀螺仪的软件,或者游戏。
第一大用途,导航。陀螺仪自被发明开始,就用于导航,先是德国人将其应用在V1、V2火箭上,因此,如果配合GPS,手机的导航能力将达到前所未有的水准。实际上,目前很多专业手持式GPS上也装了陀螺仪,如果手机上安装了相应的软件,其导航能力绝不亚于目前很多船舶、飞机上用的导航仪。
第二大用途,可以和手机上的摄像头配合使用,比如防抖,这会让手机的拍照摄像能力得到很大的提升。
第三大用途,各类游戏的传感器,比如飞行游戏,体育类游戏,甚至包括一些第一视角类射击游戏,陀螺仪完整监测游戏者手的位移,从而实现各种游戏操作效果。有关这点,想必用过任天堂WII的兄弟会有很深的感受。
第四大用途,可以用作输入设备,陀螺仪相当于一个立体的鼠标,这个功能和第三大用途中的游戏传感器很类似,甚至可以认为是一种类型。
很多游戏都需要的说,和六轴感应挂边的基本都需要