① linux内核产生的core文件怎么看
Core,又称之为Core Dump文件,是Unix/Linux操作系统的一种机制,对于线上服务而言,Core令人闻之色变,因为出Core的过程意味着服务暂时不能正常响应,需要恢复,并且随着吐Core进程的内存空间越大,此过程可能持续很长一段时间(例如当进程占用...
② 如何查看linux服务器的cpu数量,内核数,和cpu线程数
lscpu命令,查看的是cpu的统计信息.
blue@blue-pc:~$ lscpu
Architecture: i686 #cpu架构
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian #小尾序
CPU(s): 4 #总共有4核
On-line CPU(s) list: 0-3
Thread(s) per core: 1 #每个cpu核,只能支持一个线程,即不支持超线程
Core(s) per socket: 4 #每个cpu,有4个核
Socket(s): 1 #总共有1一个cpu
Vendor ID: GenuineIntel #cpu产商 intel
CPU family: 6
Model: 42
Stepping: 7
CPU MHz: 1600.000
BogoMIPS: 5986.12
Virtualization: VT-x #支持cpu虚拟化技术
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K
查看/proc/cpuinfo,可以知道每个cpu信息,如每个CPU的型号,主频等。
#cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 42
model name : Intel(R) Core(TM) i5-2320 CPU @ 3.00GHz
.....
上面输出的是第一个cpu部分信息,还有3个cpu信息省略了。
内存
概要查看内存情况
free -m
total used free shared buffers cached
Mem: 3926 3651 274 0 12 404
-/+ buffers/cache: 3235 691
Swap: 9536 31 9505
这里的单位是MB,总共的内存是3926MB。
查看内存详细使用
# cat /proc/meminfo
MemTotal: 4020868 kB
MemFree: 230884 kB
Buffers: 7600 kB
Cached: 454772 kB
SwapCached: 836 kB
.....
查看内存硬件信息
dmidecode -t memory
# dmidecode 2.11
SMBIOS 2.7 present.
Handle 0x0008, DMI type 16, 23 bytes
Physical Memory Array
Location: System Board Or Motherboard
....
Maximum Capacity: 32 GB
....
Handle 0x000A, DMI type 17, 34 bytes
....
Memory Device
Array Handle: 0x0008
Error Information Handle: Not Provided
Total Width: 64 bits
Data Width: 64 bits
Size: 4096 MB
.....
我的主板有4个槽位,只用了一个槽位,上面插了一条4096MB的内存。
磁盘
查看硬盘和分区分布
# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├—sda1 8:1 0 1G 0 part /boot
├—sda2 8:2 0 9.3G 0 part [SWAP]
├—sda3 8:3 0 74.5G 0 part /
├—sda4 8:4 0 1K 0 part
├—sda5 8:5 0 111.8G 0 part /home
└—sda6 8:6 0 269.2G 0 part
显示很直观
如果要看硬盘和分区的详细信息
# fdisk -l
Disk /dev/sda: 500.1 GB, 500107862016 bytes
255 heads, 63 sectors/track, 60801 cylinders, total 976773168 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
Disk identifier: 0x00023728
Device Boot Start End Blocks Id System
/dev/sda1 * 2048 2148351 1073152 83 Linux
/dev/sda2 2148352 21680127 9765888 82 Linux swap / Solaris
/dev/sda3 21680128 177930239 78125056 83 Linux
/dev/sda4 177932286 976771071 399419393 5 Extended/dev/sda5 177932288 412305407 117186560 83 Linux
/dev/sda6 412307456 976771071 282231808 83 Linux
网卡
查看网卡硬件信息
# lspci | grep -i 'eth'
02:00.0 Ethernet controller: Realtek Semiconctor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06)
查看系统的所有网络接口
# ifconfig -a
eth0 Link encap:以太网 硬件地址 b8:97:5a:17:b3:8f
.....
lo Link encap:本地环回
.....
或者是
ip link show
1: lo: <LOOPBACK> mtu 16436 qdisc noqueue state DOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether b8:97:5a:17:b3:8f brd ff:ff:ff:ff:ff:ff
如果要查看某个网络接口的详细信息,例如eth0的详细参数和指标
# ethtool eth0
Settings for eth0:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full #支持千兆半双工,全双工模式
Supported pause frame use: No
Supports auto-negotiation: Yes #支持自适应模式,一般都支持
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes #默认使用自适应模式
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
.....
Speed: 100Mb/s #现在网卡的速度是100Mb,网卡使用自适应模式,所以推测路由是100Mb,导致网卡从支 持千兆,变成要支持百兆
Duplex: Full #全双工
.....
Link detected: yes #表示有网线连接,和路由是通的
其他
查看pci信息,即主板所有硬件槽信息。
lspci
00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) #主板芯片
00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) #显卡
00:14.0 USB controller: Intel Corporation Panther Point USB xHCI Host Controller (rev 04) #usb控制器
00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04)
00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04)
00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) #声卡
00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) #pci 插槽
00:1c.2 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 3 (rev c4)
00:1c.3 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 4 (rev c4)
00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04)
00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04)
00:1f.2 IDE interface: Intel Corporation Panther Point 4 port SATA Controller [IDE mode] (rev 04) #硬盘接口
00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04)
00:1f.5 IDE interface: Intel Corporation Panther Point 2 port SATA Controller [IDE mode] (rev 04) #硬盘接口
02:00.0 Ethernet controller: Realtek Semiconctor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) #网卡
03:00.0 PCI bridge: Integrated Technology Express, Inc. Device 8893 (rev 41)
如果要更详细的信息:lspci -v 或者 lspci -vv
如果要看设备树:lscpi -t
查看bios信息
# dmidecode -t bios
......
BIOS Information
Vendor: American Megatrends Inc.
Version: 4.6.5
Release Date: 04/25/2012
.......
BIOS Revision: 4.6
......
dmidecode以一种可读的方式mp出机器的DMI(Desktop Management Interface)信息。这些信息包括了硬件以及BIOS,既可以得到当前的配置,也可以得到系统支持的最大配置,比如说支持的最大内存数等。
如果要查看所有有用信息
dmidecode -q
以上是linux查看硬件信息的所有命令,可以查看CPU、硬盘、网卡、磁盘等硬件的信息。
③ 如何查询和修改Linux操作系统生成core mp文件的默认路径
经过分析发现系统默认的core文件生成路径是/var/logs,但/var/logs目录并非系统自带的,系统初始安装默认自带的是/var/log,最终导致该系统出现core mp后并没能生成core文件,因此如何查询和修改系统默认的core mp文件生产路径呢?
方法如下:一. 查询core mp文件路径:
方法1: # cat /proc/sys/kerne怠珐糙貉孬股茬瘫长凯l/core_pattern。
方法2: # /sbin/sysctl kernel.core_pattern二. 修改core mp文件路径:
方法1:临时修改/proc/sys/kernel/core_pattern文件,但/proc目录本身是动态加载的,每次系统重启都会重新加载,因此这种方法只能作为临时修改。 /proc/sys/kernel/core_pattern 例:echo ‘/var/log/%e.core.%p’ > /proc/sys/kernel/core_pattern
方法2:永久修改:使用sysctl -w name=value命令。 例:/sbin/sysctl -w kernel.core_pattern=/var/log/%e.core.%p为了更详尽的记录core mp当时的系统状态,可通过以下参数来丰富core文件的命名: %% 单个%字符。
④ 怎么查看Linux的core开关,以及如何打开和关闭
mp文件可以在程序crash时,方便我们查看程序crash的地方和上下文信息。在window下,要能生成mp文件,需要自己编写相应的代码。不过现在网上可以找到相应的代码,只要把它下载后然后加到自己的工程中去,就可以了!在linux下面就简单的许多。只要打开相应的开关,linux会自动在程序crash时生成相应的core文件。这个文件和window下的mp文件类似。
下面是简单的一些步骤:
1.查看当前是否已经打开了此开关
通过命令:ulimit -c 如果输出为 0
,则代表没有打开。如果为unlimited则已经打开了,就没必要在做打开。
2.通过命令打开
ulimit -c unlimited .然后通过步骤1,可以监测是否打开成功。
3.如果你要取消,很简单:ulimit -c 0 就可以了
通过上面的命令修改后,一般都只是对当前会话起作用,当你下次重新登录后,还是要重新输入上面的命令,所以很麻烦。我们可以把通过修改
/etc/profile文件 来使系统每次自动打开。步骤如下:
1.首先打开/etc/profile文件
一般都可以在文件中找到 这句语句:ulimit -S -c 0 /dev/null
2&1.ok,根据上面的例子,我们只要把那个0 改为
unlimited 就ok了。然后保存退出。
2.通过source /etc/profile 使当期设置生效。
3.通过ulimit -c 查看下是否已经打开。
其实不光这个命令可以加入到/etc/profile文件中,一些其他我们需要每次登录都生效的都可以加入到此文件中,因为登录时linux都会加载此文件。比如一些环境变量的设置。
还有一种方法可以通过修改/etc/security/limits.conf文件来设置,这个方法没有试过,也是网上看到。不过上面两种就可以了!
最后说一下生成core
mp文件的位置,默认位置与可执行程序在同一目录下,文件名是core.***,其中***是一个数字。core
mp文件名的模式保存在/proc/sys/kernel/core_pattern中,缺省值是core。通过以下命令可以更改core
mp文件的位置(如希望生成到/tmp/cores目录下)
echo “/tmp/cores/core”
/proc/sys/kernel/core_pattern
设置完以后我们可以做个测试,写个程序,产生一个异常。然后看到当前目录会有个core*的文件。然后我们可以
gdb core。* 程序 进行调试。
⑤ linux core 怎么打开
core文件是由应用程序收到系统信号后崩溃产生的,该文件中记录了程序崩溃的原因(例如收到那种信号),调用堆栈和崩溃时的内存及变量值等等的信息。
打开core文件与编译时使用的编译器有关,但绝大多数linux程序是使用gcc编译器编译的,因此可使用对应gdb调试器打开,命令格式如下:
$ gdb 应用程序文件名 core文件名
举例:
$ gdb /usr/bin/gedit ~/core ------ 查看由gedit崩溃产生的core文件
(gdb) bt ------ 或者backtrace, 查看程序运行到当前位置之前所有的堆栈帧情况)
(gdb) quit ------ 退出
如果不知道core文件由哪个文件产生的,可使用file命令显示
$ file core
⑥ 如何用命令检查Linux服务器性能
1、查看物理cpu个数:
cat /proc/cpuinfo |grep "physical id"|sort|uniq|wc -l
2、查看每个物理cpu中的core个数:
cat /proc/cpuinfo |grep "cpu cores"|wc -l
3、逻辑cpu的个数:
cat /proc/cpuinfo |grep "processor"|wc -l
物理cpu个数*核数=逻辑cpu个数(不支持超线程技术的情况下)
⑦ 怎么查看linux服务器的cpu信息和核心数
Linux查看CPU基本信息,可以使用命令:
cat /proc/cpuinfo
例如笔者的虚拟机:
[root@promote ~]# cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 37
model name : Intel(R) Core(TM) i5 CPU M 520 @ 2.40GHz
stepping : 5
cpu MHz : 2394.049
cache size : 3072 KB
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts mmx fxsr sse sse2 ss syscall nx rdtscp lm constant_tsc up arch_perfmon pebs bts xtopology tsc_reliable nonstop_tsc aperfmperf unfair_spinlock pni pclmulqdq ssse3 cx16 sse4_1 sse4_2 x2apic popcnt aes hypervisor lahf_lm ida arat dts
bogomips : 4788.09
clflush size : 64
cache_alignment : 64
address sizes : 40 bits physical, 48 bits virtual
power management:
可见,笔者这台虚拟机,有一个逻辑CPU,主频是2.4。
延伸:
processor 逻辑处理器的id。
physical id 物理封装的处理器的id。
core id 每个核心的id。
cpu cores 位于相同物理封装的处理器中的内核数量。
siblings 位于相同物理封装的处理器中的逻辑处理器的数量。
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数
# 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数
# 查看物理CPU个数
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l
# 查看每个物理CPU中core的个数(即核数)
cat /proc/cpuinfo| grep "cpu cores"| uniq
# 查看逻辑CPU的个数
cat /proc/cpuinfo| grep "processor"| wc -l
查看CPU信息(型号)
cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
⑧ 如何查看linux的物理cpu信息
linux查看硬件信息
(1)查看硬盘大小:df-h
(2)查看内存大小
free-m
ll-h/proc/kcore
(3)查看CPUcat/proc/cpuinfo
linux下/proc/cpuinfo文件会显示cpu的信息
逻辑CPU个数是指cat/proc/cpuinfo所显示的processor的个数
#cat
/proc/cpuinfo
|
grep
processor
|
wc
-l
物理CPU个数,是指physical
id(的值)的数量
#cat
/proc/cpuinfo
|
grep
physical
id
|
sort
|
uniq
|
wc
-l
每个物理CPU中Core的个数:每个相同的physical
id都有其对应的core
id。如core
id分别为1、2、3、4,则表示是Quad-Core
CPU,若core
id分别是1、2,则表示是Dual-Core。
#cat
/proc/cpuinfo
|
grep
cpucores
|
wc
-l
逻辑CPU:每个物理CPU中逻辑CPU(可能是core,threads或both)的个数:
#cat
/proc/cpuinfo
|
grep
siblings
它既可能是cores的个数,也可能是core的倍数。当它和core的个数相等时,表示每一个core就是一个逻辑CPU,若它时core的2倍时,表示每个core又enable了超线程(Hyper-Thread)。
比如:一个双核的启用了超线程的物理cpu,其core
id分别为1、2,但是sibling是4,也就是如果有两个
逻辑CPU具有相同的core
id,那么超线程是打开的。
查看linux内核版本[root@q1test01~]#uname-a
Linuxq1test01
2.6.9-22.ELsmp#1
SMP
Mon
Sep
19
18:00:54
EDT
2005x86_64
x86_64
x86_64
GNU/Linux
[root@q1test01~]#lsb_release-a
LSB
Version::core-3.0-amd64:core-3.0-ia32:core-3.0-noarch:graphics-3.0-amd64:graphics-
3.0-ia32:graphics-3.0-noarch
Distributor
ID:RedHatEnterpriseAS
Description:Red
Hat
Enterprise
Linux
AS
release
4(Nahant
Update
2)
Release:4
Codename:NahantUpdate2
注:这个命令适用于所有的linux,包括Redhat、SuSE、Debian等发行版
⑨ linux 怎么分析core文件
从接触unix开始就一直听到和遇到core mp,特别是刚学着使用C语言在AIX下编写程序的时候,core mp更是时不时就会不请自来。记得当时刚写应用的时候,提交程序时最怕的就是在运行过程时遇到core mp,对于银行核心系统,特别是使用静态应用进程,如果一个相对频繁一点的交易导致core mp,那么毫无疑问,除了赶紧定位错误改程序外,重启进程甚至无法争取到多少缓冲的时间来进行代码的更正和测试。而且往往导致core mp的,就是程序中一个小小的未注意到或者未测试到的一个疏忽。
虽然常常遇到core mp,不过很长时间内,都是出于知道这个名字,知道它导致的后果,知道一部分导致它出现的原因,其他的就都不甚了了了。说起来,就是自己太懒了,懒得看书......少壮不努力啊。看过一则统计,说60岁以上的老人,超过70%都后悔少壮不努力,不知统计的数据能否反映整个社会的情况。不过总的来说,这句古话还是有些道理的。大家不要学我。哈哈
core mp,翻译过来讲,就是核心转储。大致上就是指,如果由于应用错误,如浮点异常、指令异常等,操作系统将会转入内核的异常处理,向对应的进程发送特定的信号(SIGNAL),如果进程中没有对这些信号进行处理,就会转入默认的处理,core mp就是其中的一种。如果进程core mp,系统将会终止该进程,同时系统会产生core文件,以供调试使用。这个core文件其实就是内存的映像,即进程执行的时候内存的内容,也就是所谓的core mp。平常大家说某某进程core mp了,其实主要的意思就是说:某某进程因为错误而被系统自动终止了。
AIX上提供了dbx工具可以对core mp进行调试,协助定位引起core mp的代码。最普通的语法是:
dbx 应用名 core文件, 然后使用where命令来显示调试信息
一般来讲,根据工作中遇到的情况,dbx还是能够比较轻松的根据提示的内容来定位代码的。不过也有一些特殊情况时,dbx显示的调试信息过于模糊或者不直观,这个时候就只能根据经验来逐步定位了。有时定位起来会耗用相当长的时间。遇到这种情况时,使用日志文件,通过在代码中穿插多个写log的语句,也可以协助发现。因为进程core mp时,日志当然也中断了,根据日志在哪个代码行之后或之前中止了,可以有效缩小寻找的范围。甚至,在有些情况下,使用日志定位是唯一简便的方法了。
⑩ linux 找出当前用户主目录下所有的.core文件
先运行 cd 到用户的主目录
执行find . -name ".core"执行