导航:首页 > 操作系统 > 超声示教仪单片机控制系统

超声示教仪单片机控制系统

发布时间:2022-07-26 08:24:34

① 求一段汇编程序,利用51单片机控制超声波传感器测距的程序。

; 基于AT89C2051单片机超声波测距系统
; 测量范围35-300厘米
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 中断入口程序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ORG 0000H
AJMP START
ORG 000BH
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 主 程 序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
START : MOV R0,#70H ;立即数70H送寄存器R0中
MOV R7,#0BH ;立即数0BH送寄存器R7中
MOV 20H,#00H ;立即数00H送20H单元中
CLEARDISP: MOV @R0,#00H ;立即数立即数00H送R0中的地址单元中
INC R0 ;寄存器R0加1
DJNZ R7,CLEARDISP;寄存器中的数值减1非零时转移
MOV TMOD,#01H ;置定时器T0工作方式样3,对内部机器周期计数
CJZCX:MOV TL0,#00H ;装入定时器初值
MOV TH0,#00H
MOV R0,#0FH
MOV R1,#5bH
puzel:MOV 14H,#08H ;超声波发射持续200us
Here:CPL P3.5 ;输出40kHz方波
NOP ;
NOP ;
NOP ;
DJNZ 14H,Here ;
SETB TR0
SETB P3.2
MOV R6,#53H ;延时1.5ms
DL0: MOV R5,#03H
DJNZ R5,$
DJNZ R6,DL0
QBA:JNB P3.7,QBC
DJNZ R1,QBA
DJNZ R0,QBA
QBC:CLR P3.2
CLR TR0
MOV 70H,tl0
MOV 71H,tH0
MOV R2,71H
MOV R3,70H
MOV R6,#22H
MOV R7,#0H
LCALL MULD
MOV R6,#64H
MOV R7,#0H
LCALL DIVD
MOV 73H,R2
MOV 74H,R3
MOV R3,#0H
MOV R4,#0H
MOV R5,#0H
MOV R6,73H
MOV R7,74H
LCALL HB2
MOV A,R4 ;分离BCD
MOV B,#10H
DIV AB
MOV 78H,A
MOV 77H,B
MOV A,R5
MOV B,#10H
DIV AB
MOV 76H,A
MOV 75H,B
MOV 7AH,#0EFH
XXX:LCALL DISPLAY
DJNZ 7AH,XXX
AJMP CJZCX
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 乘34程序(乘声速) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MULD: MOV A,R3 ;计算R3乘R7
MOV B,R7
MUL AB
MOV R4,B ;暂存部分积
MOV R5,A
MOV A,R3 ;计算R3乘R6
MOV B,R6
MUL AB
ADD A,R4 ;累加部分积
MOV R4,A
CLR A
ADDC A,B
MOV R3,A
MOV A,R2 ;计算R2乘R7
MOV B,R7
MUL AB
ADD A,R4 ;累加部分积
MOV R4,A
MOV A,R3
ADDC A,B
MOV R3,A
CLR A
RLC A
XCH A,R2 ;计算R2乘R6
MOV B,R6
MUL AB
ADD A,R3 ;累加部分积
MOV R3,A
MOV A,R2
ADDC A,B
MOV R2,A
RET

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 除100程序(除法) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DIVD: CLR C ;比较被除数和除数
MOV A,R3
SUBB A,R7
MOV A,R2
SUBB A,R6
JC DVD1
SETB OV ;溢出
RET
DVD1: MOV B,#10H ;计算双字节商
DVD2: CLR C ;部分商和余数同时左移一位
MOV A,R5
RLC A
MOV R5,A
MOV A,R4
RLC A
MOV R4,A
MOV A,R3
RLC A
MOV R3,A
XCH A,R2
RLC A
XCH A,R2
MOV F0,C ;保存溢出位
CLR C
SUBB A,R7 ;计算(R2R3-R6R7)
MOV R1,A
MOV A,R2
SUBB A,R6
ANL C,/F0 ;结果判断
JC DVD3
MOV R2,A ;够减,存放新的余数
MOV A,R1
MOV R3,A
INC R5 ;商的低位置一
DVD3: DJNZ B,DVD2 ;计算完十六位商(R4R5)
MOV A,R4 ;将商移到R2R3中
MOV R2,A
MOV A,R5
MOV R3,A
CLR OV ;设立成功标志
RET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; BCD转换 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
HB2: CLR A ;BCD码初始化
MOV R3,A
MOV R4,A
MOV R5,A
MOV R2,#10H ;转换双字节十六进制整数
HB3: MOV A,R7 ;从高端移出待转换数的一位到CY中
RLC A
MOV R7,A
MOV A,R6
RLC A
MOV R6,A
MOV A,R5 ;BCD码带进位自身相加,相当于乘2
ADDC A,R5
DA A ;十进制调整
MOV R5,A
MOV A,R4
ADDC A,R4
DA A
MOV R4,A
MOV A,R3
ADDC A,R3
MOV R3,A ;双字节十六进制数的万位数不超过6,不用调整
DJNZ R2,HB3 ;处理完16bit
RET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 显示程序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DISPLAY: MOV R1,#76H ;立即数76H送寄存器中
MOV R5,#0FEH ;立即数FEH送寄存器R5中
PLAY: MOV A,R5 ;寄存器R5中的数值送累加器A中
MOV P3,A ;累加器A中的数值送P3口
MOV A,@R1 ;以寄存器R1中的数为地址单元的数值送累加器中
MOV DPTR,#TAB ;16位地址送地址寄存器中
MOVC A,@A+DPTR ;以中的地址为基地变址寻址单元中的数送累加器
MOV P1,A ;累加器A中的数值送P1口
MOV R6,#14H ;立即数据14送寄存器R6中
DL1:MOV R7,#19H ;立即数据19送寄存器R7中
DL2:DJNZ R7,DL2 ;寄存器中的数据减1,不为零时则转移
DJNZ R6,DL1 ;寄存器中的数据减1,不为零时则转移
INC R1 ;寄存器R1中的数值加1
MOV A,R5 ;寄存器R5中的数值送累加器A中
JNB ACC.2,ENDOUT ;地址位为0则转到ENDOUT
RL A ;累加器循环右移
MOV R5,A ;累加器A中的数值送寄存器R5中
AJMP PLAY ;绝对短转移
ENDOUT: SETB P3.5 ;置P3.5口
MOV P1,#0FFH ;立即数0FEH送P1口
RET ;返回
TAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH
END ;结束

我见过一款制作容易免调试的超声波测距板,你可到“谷歌”上搜索一下《一款制作容易免调试的超声波测距板》,该超声波测距板结构简单、制作容易不需要调试、测量精度高,比较适合单片机初学都使用,同时也是单片机课程设计比较好的实训课题。该超声波测距系统,提供套件,及组装好的板件,含原理图、源程序、设计说明等。

② 51单片机如何控制超声波传感器 求C语言程序(一定要能用)100追加

//超声波模块ME007显示程序
//晶振=8M
//MCU=STC10F04XE
//P0.0-P0.6共阳数码管引脚
//Trig = P1^0
//Echo = P3^2
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
//***********************************************
sfr CLK_DIV = 0x97; //为STC单片机定义,系统时钟分频
//为STC单片机的IO口设置地址定义
sfr P0M1 = 0X93;
sfr P0M0 = 0X94;
sfr P1M1 = 0X91;
sfr P1M0 = 0X92;
sfr P2M1 = 0X95;
sfr P2M0 = 0X96;
//***********************************************
sbit Trig = P1^0; //产生脉冲引脚
sbit Echo = P3^2; //回波引脚
sbit test = P1^1; //测试用引脚

uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
//void pai_xu();

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
CLK_DIV=0X03; //系统时钟为1/8晶振(pdf-45页)
P0M1 = 0; //将io口设置为推挽输出
P1M1 = 0;
P2M1 = 0;
P0M0 = 0XFF;
P1M0 = 0XFF;
P2M0 = 0XFF;
i=0;
flag=0;
test =0;
Trig=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
//ET1=1; //打开定时器1中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
EA=0;
Trig=1;
delay_20us();
Trig=0; //产生一个20us的脉冲,在Trig引脚
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
test = !test; //测试灯变化
}

/// distance[i]=distance_data; //将测量结果的数据放入缓冲区
/// i++;
/// if(i==3)
/// {
/// distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
/// pai_xu();
/// distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
/// i=0;
/// }
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0xfd;flag++;break;
case 0x01:P0=shi;P2=0xfe;flag++;break;
case 0x02:P0=;P2=0xfb;flag=0;break;
}
}
//*****************************************************************
/*
//定时器1中断,用做超声波测距计时
timer1() interrupt 3 // 定时器0中断是1号
{
TH1=0;
TL1=0;
}
*/
//******************************************************************
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

_data=SEG7[_data];
shi_data=SEG7[shi_data];
ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<100;bt++);
}
/*
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;} /*交换值
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;} /*交换值
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;} /*交换值
}
*/

我的一个超声波程序
有问题,请问~~

//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
unsigned char code string[ ]= {"CHAO SHENG BO"};
//unsigned char code string1[ ]={"QUICK STUDY MCU"};
unsigned char code digit[ ]={"0123456789"}; //定义字符数组显示数字
//uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();

/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38); //连续三次,确保初始化成功
delay(5);
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}

void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
uchar k; //定义变量i指向字符串数组元素
LcdInitiate(); //调用LCD初始化函数
delay(10); //延时10ms,给硬件一点反应时间
WriteAddress(0x01); // 从第1行第3列开始显示
k = 0; //指向字符数组的第1个元素
while(string[k] != '\0')
{
WriteData(string[k]);
k++; //指向下字符数组一个元素
}
i=0;

flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x10; //定时器0,定时器1,16位工作方式
// TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
//ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
WriteAddress(0x41); // 从第2行第6列开始显示
WriteData('J'); //将万位数字的字符常量写入LCD
WriteData('U'); //将万位数字的字符常量写入LCD
WriteData('L'); //将万位数字的字符常量写入LCD
WriteData('I'); //将万位数字的字符常量写入LCD
WriteData(':'); //将万位数字的字符常量写入LCD
WriteData(digit[]); //将万位数字的字符常量写入LCD
WriteData(digit[shi]); //将千位数字的字符常量写入LCD
WriteData('.'); //将万位数字的字符常量写入LCD
WriteData(digit[ge]); //将百位数字的字符常量写入LCD
WriteData(' '); //将百位数字的字符常量写入LCD
WriteData('C'); //将万位数字的字符常量写入LCD
WriteData('M'); //将万位数字的字符常量写入LCD
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零

}

distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;

pai_xu();
distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
// TH0=0xfd; //写入定时器0初始值
// TL0=0x77;

}

//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

//_data=SEG7[_data];
//shi_data=SEG7[shi_data]&0x7f;
//ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************

void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}

第一个需要修改,你还是试试这个吧!这个你先理解下,修改引脚……显示为1602

③ 51单片机控制的超声波测距仪程序

希望对你有帮助
//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
i=0;
flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0

while(1) //程序循环
{
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;

while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断

if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零

}

distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
pai_xu();
distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0x7f;flag++;break;
case 0x01:P0=shi;P2=0xbf;flag++;break;
case 0x02:P0=;P2=0xdf;flag=0;break;
}
}

//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;

_data=SEG7[_data];
shi_data=SEG7[shi_data]&0x7f;
ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************

void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}

④ 基于单片机的超声波多路数据采集系统

原来做过一个超声波的控制类题目,使用四路超声波来定位一个只能小汽车,用的mc9s12xs128,用中断来采集信号,顺序采集就行了,这里要使用有多路中断资源的单片机,用来获取超声波的回拨信号确定距离,超声波测距是有距离限制的,太远了时间就会很长(自己算算就知道了),模块网上选一个就行。
至于PC机上显示,使用labview做上位机最快,很简单的一种方式,而且有例程,数据发送使用串口,PL2303模块就行
都大四了,一看就大学没好好学习,不过将来未必都是靠专业吃饭的,但是学习态度和自己的努力就很重要了。

⑤ 51单片机最多可以控制几个超声波模块

如果没有时间限制,肯定是N个,因为是分时工作。如果是同时工作那就不行了。

⑥ 求用一块单片机控制2个超声波传感器的程序

#include <reg52.h>
#include <stdio.h>
#include <math.h>
#include "1602.h"
#include "delay.h"

sbit TRIG = P1^0 ;
sbit ECHO = P1^1 ;

unsigned char DisTempData[16];

/*------------------------------------------------
定时器0初始化
------------------------------------------------*/
void TIM0init(void)
{

TMOD|= 0x01;//定时器0工作方式1
TH0=0x00;
TL0=0x00;
ET0=1;
EA=1;
}
/*------------------------------------------------
主函数
------------------------------------------------*/
main()
{
float S; //距离变量
TIM0init(); //初始化定时器0
LCD_Init(); //初始化LCD
LCD_Write_String(0,1,"LY-UR04 demo");
while(1)
{

TRIG=1; //触发信号是高电平脉冲,宽度大于10us
DelayUs2x(10);
TRIG=0;
while(!ECHO); //等待高电平
TR0=1;
while(ECHO); //等待低电平
TR0=0;
S=TH0*256+TL0;//取出定时器值高8位和低8位合并
S=S/58; //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 -> X秒=0.0058*Y米 -> 厘米=微秒/58
TH0=0;
TL0=0; //清除定时器0寄存器中的值
sprintf(DisTempData,"S=%6.2f CM ",S);//打印输出结果
LCD_Write_String(0,0,DisTempData); //在液晶屏上显示
DelayMs(250); //延时决定采样速度

}
}

/*------------------------------------------------
定时器中断子程序
------------------------------------------------*/
void Timer0_isr(void) interrupt 1
{
ECHO=0;
}

⑦ 51单片机控制的超声波测距程序问题,为什么num一直为0

嗯!这个问题是!你的外部中断使用的是外部中断0,而定时器使用的也是0.在51内,外部中断0的优先级是要大于定时器0的。所以在程序的最后是要先执行外部中断0的!

然后你的程序就会先进入外部中断服务,然后你在外部中断中又把定时器中断给关闭了!这样你就不会走到定时器中断的服务项中。

所以你的num一直是0

⑧ 怎么用单片机控制两个超声波模块测距 可以测一个但是两个要怎么办 求大神!!!感激

这个跟你的程序流程有关系,你要设计好,两个测距模块的话。
第一个时间,A发射,然后接收好,记下数据后。再延时一会儿(消除杂波影响)。再启动B模块,也是发射,接收,记下数据。再延时一会儿。再启动A。
单片机里面大部分的功能实体都有2套,所以上面这种方法足够用了。

⑨ 求超声波发生器的单片机源代码

//设计:ch314156

//模块使用方法:一个控制口发一个10US以上的高电平,就可以在接收口等待高电平输出.
//一有输出就可以开定时器计时,当此口变为低电平时就可以读定时器的值,此时就为此次测
//距的时间,方可算出距离.如此不断的周期测,就可以达到你移动测量的值了

//波特率9600(晶振12M)
#include <reg52.h>
#include <intrins.h> //调用 _nop_(); 延时函数

#define uchar unsigned char
#define uint unsigned int

sbit trigger=P2^0; //触发引脚
sbit rx=P2^1; //接收引脚
sbit key=P3^6; //按键

unsigned char key_scan(void);
uchar chaoshengbo(void);
void uart_init(void);
void uart(uchar distance);
void chaoshengbo_init(void);

uchar distance; //距离

void main()
{
uart_init(); //串口初始化
chaoshengbo_init(); //超声波初始化
uart('A') ; //串口发送'A'

while(1)
{
if (key_scan() == 1) //按键按下
{
distance = chaoshengbo(); //超声波测距
uart(distance); //串口发送距离 单位厘米
}
}
}

unsigned char key_scan(void) //按键查询
{
unsigned char on = 0,i;
while(1)
{
if(key==0) //判断是否按下
{
for(i=0;i<100;i++); //软件延时
if(key==0) //再次判断是否按下
{
on = 1;
break; //跳出循环
}
}

}
while(key==0);
return 1;
}

void uart_init(void) //串口初始化,用的是T1
{

TMOD=TMOD & 0x0f | 0x20;
TH1=0Xfd; //波特率9600(晶振12M)
TL1=0Xfd;
TR1=1;

REN=1;
SM0=0;
SM1=1;

}

void uart(uchar distance) //发送一个字节
{
SBUF = distance;
while(!TI);
TI = 0;

}

void chaoshengbo_init(void) //超声波初始化
{
trigger = 0;
}

uchar chaoshengbo(void) //超声波测距,返回厘米值
{
trigger=1; //给至少10us的高电平信号

_nop_();
_nop_();
_nop_(); //延时
_nop_();
_nop_();
_nop_();
TMOD=TMOD & 0xf0 |0x01; //T0初始化
TH0=0X0;
TL0=0X0;

trigger=0;

while(!rx); //等待上升沿
EA = 0; //关中断
TR0=1; //开启T0定时器
while(rx); //等待下降沿
TR0=0; //关闭T0定时器
EA = 1; //开中断

return (TH0*256+TL0)*0.034/2; //计算距离 单位厘米
}

⑩ 51单片机如何控制超声波传感器

温度传感器(temperature transcer)是指能感受温度并转换成可用输出信号的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

温度传感器(temperature transcer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

阅读全文

与超声示教仪单片机控制系统相关的资料

热点内容
工行app登录名如何改 浏览:23
window怎么登陆服务器 浏览:992
Python取ID对应的值 浏览:633
现在我的世界什么服务器最混乱 浏览:764
美国好的源码出售 浏览:325
苹果ipad文件夹怎么添加文字 浏览:485
腾讯云连接自己的服务器地址 浏览:218
硕士英语综合教程pdf 浏览:46
分段加密的安全性 浏览:507
咪咕直播为什么没有适配安卓系统 浏览:172
php模版大全 浏览:102
没车能解压吗 浏览:634
php开发oa系统源码 浏览:759
怎么安装苹果ios的app 浏览:581
app拉新如何机刷 浏览:480
zendeclipseforphp 浏览:480
同时有几个微信如何加密微信 浏览:86
大众20t压缩比 浏览:566
程序员要记住的500个单词 浏览:831
wq快捷方式在哪个文件夹 浏览:965