⑴ 学嵌入式linux需要先学什么
刚入门的时候,淘宝买一块cortex m3开发板即可入手,通过项目,你需要了解:任务调度、进程间通信、内存管理、设备驱动、文件系统、TCP/IP协议栈、同步异步、中断、软件架构插件化等等基本原理,这些对你后面转Linux应用开发,安卓开发,后台开发大有好处。
到这一步,就看自己职业方向想往哪里发展,如果是想深入IOT物联网做端云连接,那么可以把几种基本总线驱动,I2C、SPI、USART理解透,如果是想拥抱互联网转入应用开发,那么可以把基础组件,如协议栈、文件系统吃透,BAT面试不是很难,问的都是这些基础。
顺便说一下,学东西就要学对市场有用的,不要过于学习屠龙之术,炫技给个人带来不了财富,公司需要的是能干活的人。
不准备讲过于偏硬件的知识如Cortex-M3的多种中断模式,操作寄存器组,芯片降噪等内容,而是专注于操作系统基本知识和项目经验,这些对于开发者后面接触Linux系统大有脾益,这些软件开发经验也是去互联网公司看重的能力。如有需要学习Linux命令请如下查找:
⑵ ioctl()函数的参数和作用
因为用户层定义它是个变参函数
ioctl (int __fd, unsigned long int __request, ...)
跟printf似的
⑶ 在设Linux在设备驱动和应用程序的异步通知交互中,在设备驱动程序中增加信号释放的作用是
在设备驱动和应用程序的异步通知交互中,仅仅在应用程序端捕获信号是不够的,因为信号的源头在设备驱动端。因此,应该在合适的时机让设备驱动释放信号,在设备驱动程序中增加信号释放的相关代码。为了使设备支持异步通知机制,驱动程序中涉及3项工作。
1)支持F_SETOWN命令,能在这个控制命令处理中设置filp->f_owner为对应进程ID。不过此项工作已由内核完成,设备驱动无须处理。
2)支持F_SETFL命令的处理,每当FASYNC标志改变时,驱动程序中的fasync()函数将得以执行。因此,驱动中应该实现fasync()函数。
3)在设备资源可获得时,调用kill_fasync()函数激发相应的信号。
驱动中的上述3项工作和应用程序中的3项工作是一一对应的,设备驱动中异步通知编程比较简单,主要用到一项数据结构和两个函数。数据结构是fasync_struct结构体,两个函数分别是:
1)处理FASYNC标志变更的函数。
int fasync_helper(int fd, struct file *filp, int mode, struct fasync_struct **fa);
2)释放信号用的函数。
void kill_fasync(struct fasync_struct **fa, int sig, int band);
和其他的设备驱动一样,将fasync_struct结构体指针放在设备结构体中仍然是最佳选择。
在设备驱动的fasync()函数中,只需要简单地将该函数的3个参数以及fasync_struct结构体指针的指针作为第4个参数传入fasync_helper()函数即可。
在设备资源可以获得时,应该调用kill_fasync()释放SIGIO信号。在可读时,第3个参数设置为POLL_IN,在可写时,第3个参数设置为POLL_OUT。
⑷ linux异步IO怎么理解
就是IO不阻塞即使没有数据可读,或者空间可写时。异步IO都返回,不管如何情况。简单点的意思就是进程不会阻塞在你读写调用异步IO系统调用的时候。所以你的执行流可以去做其它的事情,当你确实要确认数据读写成功的时候,你在用aio_return这个函数去判断读写成功了吗。如果你想耗费cpu那你就一值调用aio_return轮询结果。如果想睡眠等待读写完成,那么你调用aio_suspend这个函数,你就会睡眠,当读写完成时,内核会发信号给你,这时,就会执行信号处理函数,并唤醒此进程。要充分理解异步IO,最好把信号和异步通知一起搞懂。如果会写驱动的话,最好自己去实现IO的这些功能,比如阻塞IO,非阻塞IO,轮询,异步通知,异步IO等等,其中又涉及到并发和竞争的问题。
⑸ 当linux应用程序中存在多个异步通知时怎样处理
驱动程序运行在内核空间中,应用程序运行在用户空间中,两者是不能直接通信的。但在实际应用中,在设备已经准备好的时候,我们希望通知用户程序设备已经ok,用户程序可以读取了,这样应用程序就不需要一直查询该设备的状态,从而节约了资源,这就是异步通知。好,那下一个问题就来了,这个过程如何实现呢?简单,两方面的工作。
一 驱动方面:
1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针
2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_helper函数。
3. 在需要向用户空间通知的地方(例如中断中)调用内核的kill_fasync函数。
4. 在驱动的release方法中调用前面定义的fasync函数
呵呵,简单吧,就三点。其中fasync_helper和kill_fasync都是内核函数,我们只需要调用就可以了。在
1中定义的指针是一个重要参数,fasync_helper和kill_fasync会使用这个参数。
二 应用层方面
1. 利用signal或者sigaction设置SIGIO信号的处理函数
2. fcntl的F_SETOWN指令设置当前进程为设备文件owner
3. fcntl的F_SETFL指令设置FASYNC标志
完成了以上的工作的话,当内核执行到kill_fasync函数,用户空间SIGIO函数的处理函数就会被调用了。
呵呵,看起来不是很复杂把,让我们结合具体代码看看就更明白了。
先从应用层代码开始吧:
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <unistd.h>
#define MAX_LEN 100
//处理函数,没什么好讲的,用户自己定义
void input_handler(int num)
{
char data[MAX_LEN];
int len;
//读取并输出STDIN_FILENO上的输入
len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf("input available:%s\n", data);
}
void main()
{
int oflags;
//启动信号驱动机制,将SIGIO信号同input_handler函数关联起来,一旦产生SIGIO信号,就会执行input_handler
signal(SIGIO, input_handler);
//STDIN_FILENO是打开的设备文件描述符,F_SETOWN用来决定操作是干什么的,getpid()是个系统调用,
//功能是返回当前进程的进程号,整个函数的功能是STDIN_FILENO设置这个设备文件的拥有者为当前进程。
fcntl(STDIN_FILENO, F_SETOWN, getpid());
//得到打开文件描述符的状态
oflags = fcntl(STDIN_FILENO, F_GETFL);
//设置文件描述符的状态为oflags | FASYNC属性,一旦文件描述符被设置成具有FASYNC属性的状态,
//也就是将设备文件切换到异步操作模式。这时系统就会自动调用驱动程序的fasync方法。
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);
//最后进入一个死循环,程序什么都不干了,只有信号能激发input_handler的运行
//如果程序中没有这个死循环,会立即执行完毕
while (1);
}
再看驱动层代码,驱动层其他部分代码不变,就是增加了一个fasync方法的实现以及一些改动
//首先是定义一个结构体,其实这个结构体存放的是一个列表,这个
//列表保存的是一系列设备文件,SIGIO信号就发送到这些设备上
static struct fasync_struct *fasync_queue;
//fasync方法的实现
static int my_fasync(int fd, struct file * filp, int on)
{
int retval;
//将该设备登记到fasync_queue队列中去
retval=fasync_helper(fd,filp,on,&fasync_queue);
if(retval<0)
{
return retval;
}
return 0;
}
在驱动的release方法中我们再调用my_fasync方法
int my_release(struct inode *inode, struct file *filp)
{
//..processing..
drm_fasync(-1, filp, 0);
//..processing..
}
这样后我们在需要的地方(比如中断)调用下面的代码,就会向fasync_queue队列里的设备发送SIGIO信号
,应用程序收到信号,执行处理程序
if (fasync_queue)
kill_fasync(&fasync_queue, SIGIO, POLL_IN);
好了,这下大家知道该怎么用异步通知机制了吧?
以下是几点说明[1]:
1 两个函数的原型
int fasync_helper(struct inode *inode, struct file *filp, int mode, struct fasync_struct **fa);
一个"帮忙者", 来实现 fasync 设备方法. mode 参数是传递给方法的相同的值, 而 fa 指针指向一个设
备特定的 fasync_struct *
void kill_fasync(struct fasync_struct *fa, int sig, int band);
如果这个驱动支持异步通知, 这个函数可用来发送一个信号到登记在 fa 中的进程.
2.
fasync_helper 用来向等待异步信号的设备链表中添加或者删除设备文件, kill_fasync被用来通知拥有相关设备的进程. 它的参数是被传递的信号(常常是 SIGIO)和 band, 这几乎都是 POLL_IN[25](但是这可用来发送"紧急"或者带外数据, 在网络代码里).
⑹ linux驱动模块中添加异步通知机制需要完成哪些工作
一 驱动方面:
1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针
2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_helper函数。
3. 在需要向用户空间通知的地方(例如中断中)调用内核的kill_fasync函数。
4. 在驱动的release方法中调用前面定义的fasync函数
呵呵,简单吧,就三点。其中fasync_helper和kill_fasync都是内核函数,我们只需要调用就可以了。在1中定义的指针是一个重要参数,fasync_helper和kill_fasync会使用这个参数。
二 应用层方面
1. 利用signal或者sigaction设置SIGIO信号的处理函数
2. fcntl的F_SETOWN指令设置当前进程为设备文件owner
3. fcntl的F_SETFL指令设置FASYNC标志
完成了以上的工作的话,当内核执行到kill_fasync函数,用户空间SIGIO函数的处理函数就会被调用了。
呵呵,看起来不是很复杂把,让我们结合具体代码看看就更明白了。
先从应用层代码开始吧:
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <unistd.h>
#define MAX_LEN 100
//处理函数,没什么好讲的,用户自己定义
void input_handler(int num)
{
char data[MAX_LEN];
int len;
//读取并输出STDIN_FILENO上的输入
len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf("input available:%s\n", data);
}
void main()
{
int oflags;
//启动信号驱动机制,将SIGIO信号同input_handler函数关联起来,一旦产生SIGIO信号,就会执行input_handler
signal(SIGIO, input_handler);
//STDIN_FILENO是打开的设备文件描述符,F_SETOWN用来决定操作是干什么的,getpid()是个系统调用,
//功能是返回当前进程的进程号,整个函数的功能是STDIN_FILENO设置这个设备文件的拥有者为当前进程。
fcntl(STDIN_FILENO, F_SETOWN, getpid());
//得到打开文件描述符的状态
oflags = fcntl(STDIN_FILENO, F_GETFL);
//设置文件描述符的状态为oflags | FASYNC属性,一旦文件描述符被设置成具有FASYNC属性的状态,
//也就是将设备文件切换到异步操作模式。这时系统就会自动调用驱动程序的fasync方法。
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);
//最后进入一个死循环,程序什么都不干了,只有信号能激发input_handler的运行
//如果程序中没有这个死循环,会立即执行完毕
while (1);
}
再看驱动层代码,驱动层其他部分代码不变,就是增加了一个fasync方法的实现以及一些改动
//首先是定义一个结构体,其实这个结构体存放的是一个列表,这个
//列表保存的是一系列设备文件,SIGIO信号就发送到这些设备上
static struct fasync_struct *fasync_queue;
//fasync方法的实现
static int my_fasync(int fd, struct file * filp, int on)
{
int retval;
//将该设备登记到fasync_queue队列中去
retval=fasync_helper(fd,filp,on,&fasync_queue);
if(retval<0)
{
return retval;
}
return 0;
}
在驱动的release方法中我们再调用my_fasync方法
int my_release(struct inode *inode, struct file *filp)
{
//..processing..
drm_fasync(-1, filp, 0);
//..processing..
}这样后我们在需要的地方(比如中断)调用下面的代码,就会向fasync_queue队列里的设备发送SIGIO信号
,应用程序收到信号,执行处理程序
if (fasync_queue)
kill_fasync(&fasync_queue, SIGIO, POLL_IN);
⑺ QT编程中,怎样实现linux中的异步通知功能
你大可使用宏Q_SIGNALS
BTW,既然是重名
,转换个思路