㈠ DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号
#include <reg51.h>
#define uchar unsigned char
sbit keyup=P1^0;
sbit keydn=P1^1;
sbit keymd=P1^2;
sbit out=P3^7; //接控制继电器
sbit DQ = P3^4; //接温度传感器18B20
uchar t[2],number=0,*pt; //温度值
uchar TempBuffer1[4]={0,0,0,0};
uchar Tmax=18,Tmin=8;
uchar distab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xff,0xfe,0xf7};
uchar dismod=0,xiaodou1=0,xiaodou2=0,currtemp;
bit flag;
void t0isr() interrupt 1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(number)
{
case 0:
P2=0x08;
P0=distab[TempBuffer1[0]];
break;
case 1:
P2=0x04;
P0=distab[TempBuffer1[1]];
break;
case 2:
P2=0x02;
P0=distab[TempBuffer1[2]]&0x7f;
break;
case 3:
P2=0x01;
P0=distab[TempBuffer1[3]];
break;
default:
break;
}
number++;
if(number>3)number=0;
}
void delay_18B20(unsigned int i)
{
while(i--);
}
/**********ds18b20初始化函数**********************/
void Init_DS18B20(void)
{
bit x=0;
do{
DQ=1;
delay_18B20(8);
DQ = 0; //单片机将DQ拉低
delay_18B20(90); //精确延时 大于 480us
DQ = 1; //拉高总线
delay_18B20(14);
x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败,继续初始化
}while(x);
delay_18B20(20);
}
/***********ds18b20读一个字节**************/
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 给脉冲信号
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(4);
}
return(dat);
}
/*************ds18b20写一个字节****************/
void WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(5);
DQ = 1;
dat>>=1;
}
}
/**************读取ds18b20当前温度************/
unsigned char *ReadTemperature(unsigned char rs)
{
unsigned char tt[2];
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0x44); //启动温度转换
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度
tt[0]=ReadOneChar(); //读取温度值低位
tt[1]=ReadOneChar(); //读取温度值高位
return(tt);
}
void covert1(void) //将温度转换为LED显示的数据
{
uchar x=0x00,y=0x00;
t[0]=*pt;
pt++;
t[1]=*pt;
if(t[1]&0x080) //判断正负温度
{
TempBuffer1[0]=0x0c; //c代表负
t[1]=~t[1]; /*下面几句把负数的补码*/
t[0]=~t[0]; /*换算成绝对值*********/
x=t[0]+1;
t[0]=x;
if(x==0x00)t[1]++;
}
else TempBuffer1[0]=0x0a; //A代表正
t[1]<<=4; //将高字节左移4位
t[1]=t[1]&0xf0;
x=t[0]; //将t[0]暂存到X,因为取小数部分还要用到它
x>>=4; //右移4位
x=x&0x0f; //和前面两句就是取出t[0]的高四位
y=t[1]|x; //将高低字节的有效值的整数部分拼成一个字节
TempBuffer1[1]=(y%100)/10;
TempBuffer1[2]=(y%100)%10;
t[0]=t[0]&0x0f; //小数部分
TempBuffer1[3]=t[0]*10/16;
//以下程序段消去随机误检查造成的误判,只有连续12次检测到温度超出限制才切换加热装置
if(currtemp>Tmin)xiaodou1=0;
if(y<Tmin)
{
xiaodou1++;
currtemp=y;
xiaodou2=0;
}
if(xiaodou1>12)
{
out=0;
flag=1;
xiaodou1=0;
}
if(currtemp<Tmax)xiaodou2=0;
if(y>Tmax)
{
xiaodou2++;
currtemp=y;
xiaodou1=0;
}
if(xiaodou2>12)
{
out=1;
flag=0;
xiaodou2=0;
}
out=flag;
}
void convert(char tmp)
{
uchar a;
if(tmp<0)
{
TempBuffer1[0]=0x0c;
a=~tmp+1;
}
else
{
TempBuffer1[0]=0x0a;
a=tmp;
}
TempBuffer1[1]=(a%100)/10;
TempBuffer1[2]=(a%100)%10;
}
void keyscan( )
{
uchar keyin;
keyin=P1&0x07;
if(keyin==0x07)return;
else if(keymd==0)
{
dismod++;
dismod%=3;
while(keymd==0);
switch(dismod)
{
case 1:
convert(Tmax);
TempBuffer1[3]=0x11;
break;
case 2:
convert(Tmin);
TempBuffer1[3]=0x12;
break;
default:
break;
}
}
else if((keyup==0)&&(dismod==1))
{
Tmax++;
convert(Tmax);
while(keyup==0);
}
else if((keydn==0)&&(dismod==1))
{
Tmax--;
convert(Tmax);
while(keydn==0);
}
else if((keyup==0)&&(dismod==2))
{
Tmin++;
convert(Tmin);
while(keyup==0);
}
else if((keydn==0)&&(dismod==2))
{
Tmin--;
convert(Tmin);
while(keydn==0);
}
xiaodou1=0;
xiaodou2=0;
}
main()
{
TMOD=0x01;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
out=1;
flag=0;
ReadTemperature(0x3f);
delay_18B20(50000); //延时等待18B20数据稳定
while(1)
{
pt=ReadTemperature(0x7f); //读取温度,温度值存放在一个两个字节的数组中
if(dismod==0)covert1();
keyscan();
delay_18B20(30000);
}
}
㈡ 热电偶单片机如何测温
热电偶输出的是电压信号,毫伏。用单片机热电偶测温。单片机有带A/D转换的,将热电偶输出的毫伏信号(放大),输入到单片机的A/D转换口,转换成数字量。单片机内存有热电偶电压温度数据表,根据数字量查表查出温度数,然后将温度数从口输出,显示驱动单元显示温度。
㈢ 单片机 热敏电阻测温
1、单片机热敏电阻测温首先要设计电路原理图,如图所示:
上图R3为上拉电阻,T1为接热敏电阻端,TC1为单片机AD采集口、电阻R4和电热C6为阻容滤波电路。
2、上拉电阻R3的选择:根据所用温度的范围,选择热敏电阻对应阻值范围的中间值最好,这样检测的温度偏差较小。
3、上拉电阻选定后,根据热敏电阻阻值表,算出温度真值表,用于软件查表,计算出温度值。在算温度真值表前,首先要确定单片机AD模块的分辨率。
4、单片机软件编程,滤波方法一般采用多次采集求累加和,去最大值和最小值,最后求平均。
5、单片机选择:一般选用8位单片机就够。但是,单片机自带的温度采集AD模块,最好选用10位分辨率,10位的AD模块分辨率高,温度采集精确。
6、以上为单片机热敏电阻测温的一般流程。
㈣ 单片机18b20温度传感器 temp=tp*0.0625*100+0.5;
每加1代表温度增加0.0625,可以看成是一个单位的换算,比如1Kg = 2斤, 那么每增加2斤(或减少2斤)对应的Kg数也增加或减少1.Kg; 0.0625 就是把读到18B20的数字温度量转换为实际温度的一个单位基准。
由于计算出的最高温度只会到127度,用int型能放下这个数。tp浮点数给temp赋值会发生强制类型转换,如tp = 1.2; temp = tp; temp = 1;
仅供参考!
㈤ 怎样设计电路 使51单片机测量温度范围为0到500,具体点!急!
0~500,传感器得好好搜索一下。定了传感器之后就好办了,传感器数据过AD转换进单片机,然后换算就可以了,用数码管或者LCD显示。
㈥ 单片机怎么识别温度传感器传给它的信号对应的实际温度
如果是模拟的温度传感器,它会把温度转化为对应范围的电压或电流,比如传感器的测温范围是0到100°,那对应输出的电压是0到5V或者4到20mA,如果用单片机识别还要加AD转换器。
如果是数字的温度传感器,它会把温度转化为对应范围的二进制代码,比如传感器的测温范围是0到100°,那对应输出的二进制代码是0x00到0xFF,因为已经是数字信号,单片机可以直接识别,不需要ADC
上面只是举例而已,具体的参考器件手册
㈦ 单片机 51. 温度计 测到数据!
单片机中常见是16进制,高8位指的是二进制说法。
比如,发上来的数据是:0000 0001 0101 1111
。0000 0001就是高8位,0101 1111是低8位,
换算成16进制就是:01 5F,换算成温度应该用10进制,表示是1*256+95=351,那么就是35.1度。
但是1111最多只能表示到127,如果温度太高或者零下怎么表示呢,那么就要判断,我们可以把最高为置1,也可以按照你说的高8位大于127,也就是高8位发来的是0000 1111.那么我就认为这个是零下数据。这个是事先协议规定好的!
㈧ 单片机测温原理
这需要温度感应头与单片机配合的,感应头把温度信号转换成电信号在转换成二进制数,输入单片机,单片机与储存的温度记录相比较,得出当前温度,输出。总得来说就是需要有外部原件把温度换成二进制信号(有的单片机可以直接识别电压信号,内部自动转换二进制信号),单片机识别与存储的数据进行比较得出温度。