㈠ qt android 怎样使用opengl
qt 可以通过QGLWidget运行opengl。QGLWidget继承QWidget,能够直接在里面调用opengl的接口。这个在qt文档里有具体说明,也有相关例子,所以不赘述了。但是无法在正式软件里面执行,为什么?因为正式软件是用QGraphicsScene这个场景类操作和操作一切item,而用QGraphicsView将其显示出来,而每一个item都是QGraphicsItem的子类。QGLWidget并不是QGraphicsItem类,我曾经尝试用普通的QWidget类那样,通过proxy来加进QGraphicsItem,但是没有成功。或许有方法,但是没有找到。
于是我放弃了用QGLWidget来操作opengl的打算,寻找直接在QGraphicsItem中操作opengl的方法。通过查看文档和示例代码,找到了这个方法:
1 往qt工程文件里添加opengl以及对应的lib。
2 对QGraphicsView进行一个三维对话框的指定,代码如下:
QGLWidget *widget = new QGLWidget(QGLFormat(QGL::SampleBuffers));
widget->makeCurrent();
QGraphicsView view;
view.setViewport(widget);
上述代码告诉了 QGraphicsView 类当前绘制的对象是支持opengl的。于是所有的场景中的item都将绘制到widget 上。
3 写一个QGraphicsItem的继承类,特别要重写paint函数。代码如下:
void XXX::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget)
{
painter->beginNativePainting();
glColor3f(0.5,1.0,0.2);
glBegin(GL_TRIANGLES);
glVertex3f(100.0,100.0,-100.0);
glVertex3f(150.0, 100.0, -100.0);
glVertex3f(100.0, 150.0, -100.0);
glEnd();
painter->endNativePainting();
}
上面这个函数主要是用opengl接口绘制了一个三角形。记住,在opengl绘制之前一定要执行painter->beginNativePainting()以及painter->endNativePainting()这两个语句。
QGraphicsScene、 QGraphicsView和QGraphicsItem的关系可以查阅相关文档,也不赘述了。
不过我按照这个方式画的三角形,怎么也在窗口上显示不出来,找了半天才发现问题在这个函数上QGraphicsItem::boundingRect()。这个函数是 干什么用的呢?主要用来返回该item的初始化大小,这个大小不会轻易改变,后续的改变都可以通过矩阵来完成,但是初始大小是不变的。QGraphicsView通过这个矩形来判断当前item是不是需要重绘,如果在重绘区外,则不调用重绘函数了。同时碰撞检测之类,也可以用这个矩形来判断。原来,item本身的矩阵外包框不对,所以才导致了重回不出来,改过来就正确了。
上面说的很潦草,具体怎么改的步骤就不说了。要想正确的绘制,必须得弄清楚坐标系的关系,QGraphicsScene、QGraphicsView以及QGraphicsItem这三个坐标系到底是什么关系。我看了文档,也自己进行了测试,但是感觉文档和测试的结果有些出入。具体出入不说了。说一下自己得心的吧。
先说明:涉及到一切大小和长度,都是像素大小,至少我测试的结果是这样的。
在建立QGraphicsScene对象的时候,有一个构造函数是矩形,这个矩形是什么含义呢?经过测试,发现这个矩形并没有指定弹出窗口的位置,比如,我把矩形的左上角点指定为-1000,-1000,显示的位置和1000,1000是一样的,而长度则正确指定了(当然,可能会有滚动条)。所以,这个矩形的左上角点并不是显示的窗口的位置,而是它在逻辑上的左上角点。我们显示一切item,都是以这个逻辑上的坐标系为准来绘制的。比如,左上角点是-1000,-1000,而item的位置在-500,-500,则这个-500,-500相当于在显示窗口的左上角往下各加500个像素的坐标的位置。
那么 QGraphicsItem的boundingRect是什么意思呢?返回的是什么大小?是以什么坐标系显示的大小?首先,这个大小肯定是以像素为单位的,其次,这个矩形的坐标是以QGraphicsScene的逻辑坐标为准的。当然这个大小是没有任何矩阵叠加的大小。有了矩阵叠加后,实际的矩形可能会发生变化。假如在boundingRect中指定矩形的左上角为100,100,那么最终体现的位置则是QGraphicsScene逻辑坐标100,100的位置,如果QGraphicsScene的左上角点已经指定为-1000,-1000,那么这个位置实际上就是离窗口左上角点1100,1100的位置(由于有滚动条,所以也不一定是这个长度。)
那么在QGraphicsItem的paint函数中进行了opengl绘制用的是什么坐标呢?其实用的也是QGraphicsScene的逻辑坐标。如上面的例子,绘制的直角三角形直角顶点是0,0,那么显示的位置就是距离显示窗口左上角点1000,1000的位置。不过opengl的所有绘制都是没有矩阵叠加的基础上,如果用矩阵叠加,则显示的位置肯定和指定的有区别了。比如,我用setPos强制指定一个位置,这个位置将和opengl绘图坐标相叠加,最后显示到窗口上。我推测setPos其实是改变了矩阵,是一个平移矩阵。
㈡ android opengl制作地图 绘制图片的问题
是要自己开发地图引擎,还是需要用地图引擎类似的功能啊。。。如果是后者那么android的Google Map API 就是基于OpenGL ES 的,如果是想自己开发地图引擎,既然Google做了,所以说是可行的,至于感觉如何只有自己做过了才知道啊
㈢ android opengl技术主要有哪些应用
1. 一般应用app开发,用不到
2. 游戏开发等
㈣ 如何在Android上使用OpenGL ES 2.0绘制点
FrameBuffer对象的概念可以参见前面文章AndroidOpenGLES开发教程(23):FrameBuffer。简单的和2D图像类比,FrameBuffer如果对应到二维图形环境中,就是一个2D的内存数组空间,缺省情况为屏幕的显存,也可以创建Offscreen内存空间,此时FrameBuffer可以是一个二维数组,数组每个元素代表一个像素颜色。对于三维图形来说,除了需要代表颜色的二维数组(ColorBuffer),还需要深度二维数组(DepthBuffer)或遮罩数组(StencilBuffer),因此在OpenGL中的FrameBuffer为上述ColorBuffer,DepthBuffer,StencilBuffer的集合。如果手机具有GPU,其缺省的FrameBuffer也是3D屏幕显示区域。通过OpenglES扩展支持,应用程序也可以创建内存中的FrameBuffer对象(不用于屏幕显示)。通过这种应用程序创建的FrameBuffer对象,OpenGL应用可以将图像显示输出重新定向到这个非屏幕显示用FrameBuffer对象中,类似于二维图形绘制中常用的Offscreen技术。和缺省的屏幕显示FrameBuffer一样,由应用程序创建的FrameBuffer对象也是由ColorBuffer,DepthBuffer和StencilBuffer(可选)的集合组成。这些Buffer在FrameBuffer对象中可以称为FrameBuffer-attachable图像,FrameBuffer定义了一些接入点(AttachmentPoint)可以用于连接(Attach)这些Buffer数组。OpenGLES定义了两种FrameBuffer-attachable图像,Texture和renderbuffer,简单的可以将Texture理解为Colorbuffer或是2D图像,renderbuffer对应于depthbuffer。
㈤ Android opengl es 2.0怎么学习
OpenGLES是一个让人崩溃的东西。在Andorid手机上做3D还就得用它。把我记的一些笔记分享在这里吧:
Android OpenGL ES简介 20011-6-3
Android系统使用OpenGL的标准接口来支持3D图形功能,android 3D图形系统也分为java框架和本地代码两部分。
本地代码主要实现的OpenGL接口的库,在Java框架层,javax.microedition.khronos.opengles是java标准的OpenGL包,
android.opengl包提供了OpenGL系统和Android GUI系统之间的联系。
Android的本地代码位于frameworks/base/opengl下,
JNI代码位于frameworks/base/core/com_google_android_gles_jni_GLImpl.cpp和frameworks/base/core/com_google_android_gles_jni_EGLImpl.cpp,
java类位于opengl/java/javax/microedition/khronos下
本地测试代码位于frameworks/base/opengl/tests。包括angeles、fillrate等14个测试代码,这些代码都可以通过终端进行本地调用测试(模拟器中使用adb shell)。
OpenGL ES 1.x
固定管线操作,支持glVertexPointer()等函数,不支持GLSL。头文件在ndk的GLES目录下,库文件是libGLESv1_CM.so。
OpenGL ES 2.x
可编程管线操作,不兼容1.x,不支持固定管线操作,例如glVertexPointer()等函数。支持GLSL(还必须用这个来编程)。头文件在ndk的GLES2目录下,库文件是libGLESv2.so。
OpenGL ES学习 2011-6-30
OpenGL定义了自己的数据类型。应该坚持使用这些OpenGL的数据类型,从而保证可移植性和效率。
OpenGL ES 目前不支持64位数据类型。
OpenGL ES 只支持三边形。
OpenGL ES 只支持gl开头的函数,glu库都不支持。
OpenGL ES 从 OpenGL中删除的功能:
1. glBegin/glEnd
2. glArrayElement
3. 显示列表
4. 求值器
5. 索引色模式
6. 自定义裁剪平面
7. glRect
8. 图像处理(这个一般显卡也没有,FireGL/Quadro显卡有)
9. 反馈缓冲
10. 选择缓冲
11. 累积缓冲
12. 边界标志
13. glPolygonMode
14. GL_QUADS,GL_QUAD_STRIP,GL_POLYGON
15. glPushAttrib,glPopAttrib,glPushClientAttrib,glPopClientAttrib
16. TEXTURE_1D、TEXTURE_3D、TEXTURE_RECT、TEXTURE_CUBE_MAP
17. GL_COMBINE
18. 自动纹理坐标生成
19. 纹理边界
20. GL_CLAMP、GL_CLAMP_TO_BORDER
21. 消失纹理代表
22. 纹理LOD限定
23. 纹理偏好限定
24. 纹理自动压缩、解压缩
25. glDrawPixels,glPixelTransfer,glPixelZoom
26. glReadBuffer,glDrawBuffer,glCopyPixels
OpenGL ES 2.0 2011-10-9
2.0和1.1不兼容。
- 2.0使用的头文件是ndk的include目录下的GLES2目录,有gl2.h,gl2ext.h,gl2platform.h,而1.1使用的是GLES目录。
- 2.0使用的库文件是ndk的lib目录下的libGLESv2.so,而1.1使用的是libGLESv1_CM.so。
- 2.0中取消了很多1.1函数,例如glMatrixModel和glLoadIdentity等。
OpenGL着色语言(GLSL――OpenGL Shading Language)
- 使用2.0,必须学此语言。因为很多1.1的函数都被取消了。
san-angeles NDK OpenGL ES 1.1的例子程序 2012-3-8
San Angeles,查维基网络,是一个虚构的未来概念城市,位于南加州。常在电影中出现,来源自Los Angeles和San Diego.
该程序的演示效果是,观察一个宏伟的城市,地面是镜面有建筑倒影,城市中有飞船飞过。前后有5、6个观察点,而且镜头在每个观察点不停的移动。
这个例子,用NDK(C++)调用OpenGL ES 1.1来绘制了San Angeles这个城市。基本上全部使用了NDK,Java程序只有1个。
用vc2005演示一下,目的通过跟踪代码了解一些细节。方法是:
- 将jni下所有的.h文件,以及demo.c,app-win32.c复制出来,放在一个专门的目录下,然后改造成用OpenGL的而不是ES的。(或者干脆删除大段的绘制代码,保证编译通过)
首先分析Java代码
- DemoActivity.java,这是唯一的Java文件,它主要需要下列4个jni的接口:
- private static native void nativeInit(); // 初始化
- private static native void nativeResize(int w, int h);
- private static native void nativeRender(); // 绘制1帧
- private static native void nativeDone();
其次分析C++代码 app-android.c
- 首先,调用了importGLInit(),动态导入OpenGL的库。
- 其次,调用了 appInit(),在内存中建立了平台无关的3D对象集合。建立方法是用一个数组,用类似画圆拔高的方式产生诸多三角形。
- 然后,在每个时钟周期中调用appRender(),细节是:
- prepareFrame(width, height); // 准备OpenGL ES绘制框架。其实就是清空颜色和深度缓冲,重置投影和模型矩阵。
- camTrack(); // 算好在当前时钟周期,镜头的位置、朝向及焦距等。然后调用gluLookAt来实现。
- configureLightAndMaterial(); // 设置光源和材质
- drawModels(-1); // 先绘制倒影(其实就是将所有模型z轴倒过来画)
- 第一个循环,是画精致的物体
- 第二个循环,是画运动的物体
- drawGroundPlane(); // 再绘制镜子一般的地面。在绘制前取消光照,打开混合,然后绘制。绘制后还原状态。
- drawModels(1); // 再绘制所有模型
- drawFadeQuad(); // 最后绘制淡出框,用融合的方式画一个遮住整个视口的2D框,融合系数和时间相关。
㈥ android opengl es画动画的时候老是出现抖动,不流畅是为什么求高人给个android opengl动画的例子。
天真了, 嘿嘿. 稍微说两句, 1. 其实正是微软造成了这种很乱(所谓的百花齐放)的局面, 出于商业的目的, 微软会在别人制定好标准之后再搞一套自己的东西, 但是又常常搞不过专攻这一块的领域. (举例: 在数据库上做SQL Server, 效率甚至低于开源的My SQL, 更不用说是Oracle了; 游戏领域的帝国时代, 和暴雪的差远了; .net和C#框架是针对Java的, 但又没实现跨平台, 徒有其型 ... 不胜枚举). 2. 微软的软件的特点, 表面文章做的很好, 但是内部稳定性不行.(不能说没有优势, 在有些方面还是方便到客户的, 但缺陷是长期的) Windows Vista像noodle的代码, 到Word我每天必花时间解决它的莫名奇妙的毛病. Visual Studio也一样, intellisense模块会把你卡死, UTF-8的文件头Bug拒绝修订等等. 3. 微软喜欢把简单的问题复杂化, 各种软件动辄几个G几十个G上来, 用户每天日常用到的功能所占的比例很低, 大量的计算机资源被消耗在了用户从来用不到的地方. 而且因为很多没必要的复杂, 用户对它原理的了解会增加很多不必要的障碍. 总结: 微软的软件对初学者很方便, 这是一个事实. 它把大量的投入投在的这一块. 但是当你学习深入了, 水平提高了, 你会发现微软的软件很不方便: 1. 会让你白白浪费很多时间去学没必要学的东西, 而且由于它对自己技术的垄断, 有新的技术提出来, 你学的东西很快就淘汰. 还得从头学. 2. 拿Visual Studio来说, 我用过VC6, VC2003和VC2005, 后面几款由于失望没再使用了. 到VC2005还没有很方便的提供.h和对应文件名的.cpp简单快速切换的基本功能(或者我没找到, 菜单工具条里没有).(其他开源的IDE都有, 而且很实用), 一大堆让人看的头晕的功能配置, 把有用的藏起来了. 3. 拿Win7来说, 前面我有个朋友局域网共享发生连不上的问题. 我在WinXP下有经验, 就叫我帮忙解决, 我查了很多资料折腾了一整天, 因为变化太大, 没有成功, 也不知道原因(反正就是有Win7特有的权限问题, 而权限点不亮, 用网上搜索到的所有方法试验失效). 我在Linux上也做过配置, 经验上来说Linux上第一次搞定这种问题会比Windows麻烦, 因为很多专有的配置命令, 但搞定了一次之后, 不会发生这样情况, 而且就是搞不定, 一般都能找到原因.(开源的好处) 这几年微软处于中年期, 基本已经快开始走下坡路了. 它的技术是厉害, 里面有很多牛人, 我也见过不少, 也很佩服(比如说James Larus, 我在国外的时候见过一面). 即使里面的小员工也真的很强. 但我不觉得它还能垄断, google反而是在上升期. 这不是具体技术的问题, 而是理念的问题. 以上仅代表个人观点, 不针对任何组织和个人, 难免有偏颇之处, 请指正.
我是非常用心回答的,请加分
eyafhfsgkq5761672011-9-22 11:58:40
㈦ 求 android opengl es 2.0 的开发文档 教程之类 或者例子(有注释的java方面)分多多给
[email protected], 给我发个邮箱地址吧, 给你发个教程,里面有大量 3D开发的例子。我起步就看的这个。
《Android3D游戏开发技术详解与典型案例》 60M大小。