导航:首页 > 操作系统 > 上拉电阻和单片机

上拉电阻和单片机

发布时间:2022-08-09 17:18:09

1. 单片机的上拉电阻是怎么回事

当I/O口的驱动能力不够 加上拉可以增加驱动能力 或者像51单片机P0口 和其他可以配置I/O口的单片机 配置成开漏输出 这些口开漏输出 就是指输出“0”就是接地了,而输出“1”就是不接地,要让他真正输出高电平,就需要上拉

2. 51单片机关于上拉电阻问题

51单片机的P0口在输出1(高电平)时其实是高阻态,也就是输出电阻无穷大,相当于断开。高阻态显然不能向外提供电流,所以加一个上拉电阻从Vcc取电流,此时单片不给LED提供电流,全部电流由Vcc提供。由于P0口输出1时是高阻态,IO口的电位不会被钳位(你可以把它理解成LED与IO没有连接)。P0口输出0时,Vcc通过上拉电阻往单片机灌电流,在电阻上有5V的压降,与输出的逻辑电平0没有矛盾。

51单片机除P0外的其他IO口一般不需要接上拉电阻,但一定要在IO口和LED间接一个几百欧到1k左右的限流电阻,在LED导通时,由于有电流流经电阻,电阻上有压降,LED导通后压降一般在1.6V到3V不等(不会是0.7V),加上电阻上的压降,IO口上电压就可以达到5V,这与单片机输出的高电平没有矛盾。(事实上限流电阻的大小就是这么确定的,LED电流一般是几mA)

如果是其它单片机,如AVR或者PIC,IO口的结构可能不同,具体电路也就不同。但不管什么单片机,一般是不用IO直接驱动功率器件的,而是另外加一个驱动芯片,由单片机提供逻辑电平(几乎没有电流),驱动芯片提供功率(较大电流)。

总的来说,你图上画的用于51单片机的P0口是没有问题的。如果接的是51单片机的其他IO口,没有限流电阻是不合理的,一定要在这种情况下分析你提的问题的话,LED导通后的电流是由Vcc通过外接的上拉电阻和这个端口内部的上拉电阻并联提供的,此时端口的电位被钳位在低电平,但单片机输出是往锁存器里写0或1的逻辑,因为写1指令使内部锁存器始终为高,所以认为单片机输出高电平。但如果执行一条读指令,判断的是引脚的状态,因为被led嵌位那就是输入为低了,那么读到的就是0。也就是说,输出为高,输入为低。

3. 请问单片机内部上拉电阻问题

单片机内部有上拉电阻,那是用来输出高电平电流的。
如果单片机以输出低电平的形式带动像LED这样的负载,就要加限流电阻了。
--------
最佳答案所说的:
51还加限流电阻我没这样用过,51一般都是需要接驱动芯片,如74系列的一些驱动,其实接三极管也可以,原理一样。要是加限流也是在驱动芯片输出引脚上加,比如驱动LED就需要在驱动后边加个限流电阻。
--
有如下几个错误:
1。51的引脚加上限流电阻的,很常见的,你也一定用过,只是你还不理解而已。
2。一般来说,现在的51单片机,本身就有驱动芯片所具有的驱动能力。可不用驱动芯片。
3。如果是接了三极管,使用基极电阻,那是不可避免的,这个基极电阻,也就是限流电阻。
4。用单片机引脚,即可驱动LED,并不需要另外的驱动芯片,限流电阻,就应该接在单片机引脚上。
--------
最佳答案还说:
51单片机引脚的输出电流和输入电流都是很小的(1MA左右)。
--
这就是明显的错误。真不知道这是从哪里搞来的数据,建议求知者好好看看各种品牌51单片机的PDF说明书,不要被这些随意的瞎编误导了。
--------
片内的上拉电阻,其阻值相当的大,所以IO引脚输出高电平的时候,并没有很强的驱动能力,容易被外部电路改变电平,那么,输出高电平时,并不能保证就是高电平。

4. 单片机上拉电阻的作用和接法

1.一般51单片机的P0口在作为地址/数据复用时不接上拉电阻。
2.作为一般的I/O口时用时,由于内部没有上拉电阻,故要接上上拉电阻!!
3.当p0口用来驱动PNP时,需接上上拉电阻 接法:一端接电源,一端接单片机输出

5. 为什么说单片机加上拉电阻能增大驱动

你在追问里写到:“如果是输出低电平,那么经过上拉电阻的电流也会流入单片机端口,那么单片机的吸收电流比不接时不是反而更小”,这句话我认为是正确的。
首先明确一下两个名词:拉电流、吸收电流。
拉电流:高电平时从单片机里流向负载的最大电流。暂且称之为高电平驱动能力。
吸收电流:低电平时从负载流向单片机的最大电流。暂且称之为低电平驱动能力。
单片机提供拉电流的大小主要取决于I/O口的晶体管导通电阻的大小和晶体所能承受的最大功率,这两样都是不变的,增加上拉电阻能增加拉电流(把电阻也看作单片机的一部分),也就是增加了驱动能力。驱动能力能增加多少取决于上拉电阻的大小和上拉电阻所接的电压大小。但上拉电阻不但不能增加吸收电流,反而会减小灌电流,原因跟你写的一致。不过单片机的拉电流要比吸收电流大的多,增加上拉电阻对吸收电流影响不是很大,除非电阻阻值非常小。
所以,准确的说法是:上拉电阻能增加高电平时的驱动能力,但会减小低电平时的驱动能力。

6. 单片机引脚为何接上拉电阻

上拉电阻下拉电阻的总结
作者:佚名
转贴自:网络
点击数:68
文章录入:admin
上拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑
以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理。
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1.
驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.
下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.
高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.
频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:
500uA
x
8.4K=
4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA
200uA
x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列
设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)。

7. 单片机中上拉电阻的作用

上拉就是将不确定的信号通过一个电阻嵌位在高电平,电阻同时起限流作用,下拉同理.
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

8. C51单片机中 上拉电阻、下拉电阻的原理和作用

上拉电阻就是将不确定的信号端通过对正电源接一个电阻使该信号端暂时维持在高电平,下拉电阻就是将不确定的信号端通过对负电源电源接一个电阻使该信号端暂时维持在低电平。

阅读全文

与上拉电阻和单片机相关的资料

热点内容
以前手机号换了要怎么登录农行app 浏览:192
线切割编程系统怎么绘画 浏览:233
如何搭建云服务器异地容灾 浏览:923
黄金拐点指标源码 浏览:91
算法导论第九章 浏览:276
鸽子为什么生成服务器没反应 浏览:490
freebsdnginxphp 浏览:215
噪声消除算法 浏览:607
vue类似电脑文件夹展示 浏览:111
后备服务器有什么功效 浏览:268
连不上服务器怎么连 浏览:600
什么构架的可以刷安卓系统 浏览:771
爱奇艺APP怎么兑换CDK 浏览:994
程序员买4k显示器还是2k显示器 浏览:144
python多进程怎么多窗口 浏览:818
电脑文件夹怎么取消类别 浏览:47
cad拉线段命令 浏览:924
如何用电脑清理手机没用的文件夹 浏览:100
储存层次结构对程序员的意义 浏览:477
微信文件夹查看器 浏览:952