导航:首页 > 操作系统 > linuxpthreadmutex

linuxpthreadmutex

发布时间:2022-08-09 18:04:13

⑴ pthread mutex放在共享内存中,可以跨进程使用么

创建的时候得调用
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared);
其中 pshared 的值为 PTHREAD_PROCESS_SHARED
不过也得看 pthread 的版本,如果是 linuxthreads,则不支持
NPTL 则支持

⑵ linux mutex是可重入的吗

函数原型:Int pthread_mutex_init(pthread_mutex_t *restrict_mutex,const pthread_mutextattr_t *restrict attr) 该函数主要用于多线程中互斥锁的初始化。 如果attr为空的话,则是默认属性,而默认属性的快速互斥锁。 pthread_mutex_init完成成功后会返回0,其他值都是错误的。 int pthread_mutextattr_destroy(pthread_mutextattr_t *restrict_mutext) 该函数是销毁线程互斥锁 设定互斥锁的作用域: Int pthread_mutextattr_setpshared(pthread_mutexattr_t *restrict mutext, int pshared) 在多线程中是共享互斥锁的。 如果想在多个进程中共享互斥锁,可以把pshared设置PTHREAD_PROCESS_SHARED 如果只想在有同属于一个进程创建的线程中共享互斥锁,则可以把pshared设置为PTHREAD_PROCESS_PRIVATE 获得互斥锁的作用域: int pthread_mutexattr_getpshared(pthread_mutexattr_t *restrict mutext,int *pshared); 设定互斥锁类型的属性: int pthread_mutexattr_settype(pthread_mutexattr_t *restrict mutext,int type) 其中type类型都有: PTHREAD_MUTEX_NOMRAL:此类型的互斥锁不会检测死锁 而其中的缺省值值是PTHREAD_MUTEX_DEFAULT PTHREAD_MUTEX_ERRORCHECK:是提供错误检查 int pthread_mutexattr_setprotocal(pthread_mutexattr_t *attr,int protocal) protocal可以设置互斥锁属性的协议 PTHREAD_PRIO_NONE PTHREAD_PRIO_INHERIT PTHREAD_PRIO_PROTECT 作者舞者博客

⑶ Linux下线程同步的几种方法

Linux 线程同步的三种方法
线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
一、互斥锁(mutex)
通过锁机制实现线程间的同步。
初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//编译:g++ -o thread testthread.cpp -lpthread
二、条件变量(cond)
互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。
初始化条件变量。
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
清除条件变量。无线程等待,否则返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;

static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
//用这个流程是比较清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解锁
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信号量(sem)
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
信号量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
等待信号量。给信号量减1,然后等待直到信号量的值大于0。
int sem_wait(sem_t *sem);
释放信号量。信号量值加1。并通知其他等待线程。
int sem_post(sem_t *sem);
销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;

static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}

⑷ Linux线程唤醒多次

生产者产出数据到消费者获得数据的延时较大,或者是CPU占用较高。
生产者唤醒逻辑。pthread_mutex_lock(&mutex);pthread_cond_signal(&cond);pthread_mutex_unlock(&mutex);
条件变量的操作也需要达到线程安全的要求,因此需要互斥对象来进行保证。避免两个线程同时操作条件变量引发问题。而通过查阅pthread_cond_wait()的相关资料可知,当程序运行到pthread_cond_wait()时,会将互斥对象锁释放,以便生产者能够顺利唤醒。而在消费者被成功唤醒,pthread_cond_wait()等待完成后,互斥对象会被重新上锁直到手动释放。

⑸ linux pthread 信号量 占用资源吗

glibc提供的pthread互斥信号量可以用在进程内部,也可以用在进程间,可以在初始化时通过pthread_mutexattr_setpshared接口设置该信号量属性,表示是进程内还是进程间。进程内的使用较为简单,本文的总结主要是针对进程间的,进程内的也可以参考,其代码实现原理是类似的。
一、实现原理
pthread mutex的实现是非常轻量级的,采用原子操作+futex系统调用。
在没有竞争的情况下,即锁空闲时,任务获取信号量只需要通过原子操作锁的状态值,把值置为占有,再记录其他一些俄信息(owner,计数,如果使能回收功能则串入任务的信号量回收链表等),然后就返回了。
如果在获取锁时发现被占用了,如果调用者需要睡眠等待,这时候会触发futex系统调用,由内核继续处理,内核会让调用任务睡眠,并在适当时候唤醒(超时或者锁状态为可用)。
占用锁的任务释放锁时,如果没有任务等待这把锁,只需要把锁状态置为空闲即可。如果发现有其他任务在等待此锁,则触发futex系统调用,由内核唤醒等待任务。
由此可见,在没有竞争的情况下,mutex只需要在用户态操作锁状态值,无须陷入内核,是非常高效的。
获取到锁的任务没有陷入内核,那么当锁支持优先级翻转时,高优先级任务等待这把锁,正常处理必须提升占用锁的任务优先级。内核又是怎么知道是哪个任务占用了锁呢?实现上,复用了锁的状态值,该值在空闲态时为0,非空闲态则保存了锁的持有者ID,即PID,内核态通过PID就知道是那个任务了。
二、内核对锁的管理
内核维护了一个hash链表,每把锁都被插入到hash链表中去,hash值的计算如下(参考get_futex_key):1,如果是进程内的锁,则通
过锁的虚拟地址+任务mm指针值+锁在页内偏移;2,如果是进程间的锁,则会获取锁虚拟地址对应物理地址的page描述符,由page描述符构造
hash值。
这样计算的原因是进程间的锁在各个进程内虚拟地址可能是不同的,但都映射到同一个物理地址,对应同一个page描述符。所以,内
核使用它来定位是否同一个锁。
这里对进程间互斥锁计算hash值的方法,给进程间共享锁的使用设置了一个隐患条件。下面描述这个问题。

三、进程间互斥信号量的使用限制:必须在系统管理的内存上定义mutex结构,而不能在用户reserved的共享内存上定义mutex结构。
锁要实现进程间互斥,必须各个进程都能看到这个锁,因此,锁结构必须放在共享内存上。
获取系统的共享内存通过System V的API接口创建:shmget, shmat,shmdt。但是shmget的参数需要一个id值,各进程映射同一块共享内存需要同样的ID值。如果各个进程需要共享的共享内存比较多,如几千上万个,ID值如果管理?shmget的man帮助和一些示例代码给出的是通过ftok函数把一个文件转为ID值(实际就是把文件对应的INODE转为ID值),但实际应用中,如果需要的共享内存个数较多,难道创建成千上万个文件来使用?而且怎么保证文件在进程的生命周期内不会被删除或者重建?
当时开发的系统还存在另外一种共享内存,就是我们通过remap_pfn_range实现的,自己管理了这块内存的申请释放。申请接口参数为字符串,相同的字符串表示同一块内存。因此,倾向于使用自己管理的共享内存存放mutex结构。但在使用中,发现这种方法达不到互斥的效果。为什么?
原因是自己管理的共享内存在内核是通过remap_pfn_range实现的,内核会把这块内存置为reserved,表示非内核管理,获取锁的HASH值时,查找不到page结构,返回失败了。最后的解决方法还是通过shmget申请共享内存,但不是通过ftok获取ID,而是通过字符串转为ID值并处理冲突。

四、进程间互斥信号量回收问题。
假设进程P1获取了进程间信号量,异常退出了,还没有释放信号量,这时候其他进程想来获取信号量,能获取的到吗?
或者进程P1获取了信号量后,其他进程获取不到进入了睡眠后,P1异常退出了,谁来负责唤醒睡眠的进程?
好在系统设计上已经考虑了这一点。
只要在信号量初始化时调用pthread_mutexattr_setrobust_np设置支持信号量回收机制,然后,在获取信号量时,如果原来占有信号量的进程退出了,系统将会返回EOWNERDEAD,判断是这个返回值后,调用pthread_mutex_consistent_np完成信号量owner的切换工作即可。
其原理如下:
任务创建时,会注册一个robust list(用户态链表)到内核的任务控制块TCB中期,获取了信号量时,会把信号量挂入链表。进程复位时,内核会遍历此链表(内核必须非常小心,因为此时的链表信息可能不可靠了,可不能影响到内核),置上ownerdead的标志到锁状态,并唤醒等待在此信号量链表上的进程。
五、pthread接口使用说明
pthread_mutex_init: 根据指定的属性初始化一个mutex,状态为空闲。
pthread_mutex_destroy: 删除一个mutex
pthread_mutex_lock/trylock/timedlock/unlock: 获取锁、释放锁。没有竞争关系的情况下在用户态只需要置下锁的状态值即返回了,无须陷入内核。但是timedlock的入参为超时时间,一般需要调用系统API获取,会导致陷入内核,性能较差,实现上,可先trylock,失败了再timedlock。
pthread_mutexattr_init:配置初始化
pthread_mutexattr_destroy:删除配置初始化接口申请的资源
pthread_mutexattr_setpshared:设置mutex是否进程间共享
pthread_mutexattr_settype:设置类型,如递归调用,错误检测等。
pthread_mutexattr_setprotocol:设置是否支持优先级翻转
pthread_mutexattr_setprioceiling:设置获取信号量的任务运行在最高优先级。
每个set接口都有对应的get接口。

六、pthread结构变量说明

struct __pthread_mutex_s
{
int __lock; ----31bit:这个锁是否有等待者;30bit:这个锁的owner是否已经挂掉了。其他bit位:0锁状态空闲,非0为持有锁的任务PID;
unsigned int __count; ----获取锁的次数,支持嵌套调用,每次获取到锁值加1,释放减1。
int __owner; ----锁的owner
unsigned int __nusers; ----使用锁的任务个数,通常为1(被占用)或0(空闲)
int __kind;----锁的属性,如递归调用,优先级翻转等。
int __spins; ----SMP下,尝试获取锁的次数,尽量不进入内核。
__pthread_list_t __list; ----把锁插入回收链表,如果支持回收功能,每次获取锁时要插入任务控制块的回收链表。
}__data;

⑹ linux线程同步的互斥锁(mutex)到底怎么用的》谢谢

互斥锁(mutex) 通过锁机制实现线程间的同步。

1、初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。

2、静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

3、动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);

4、加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。

intpthread_mutex_lock(pthread_mutex*mutex);
intpthread_mutex_trylock(pthread_mutex_t*mutex);
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
intpthread_mutex_unlock(pthread_mutex_t*mutex);
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
intpthread_mutex_destroy(pthread_mutex*mutex);
#include<cstdio>
#include<cstdlib>
#include<unistd.h>
#include<pthread.h>
#include"iostream"
usingnamespacestd;
pthread_mutex_tmutex=PTHREAD_MUTEX_INITIALIZER;
inttmp;
void*thread(void*arg)
{
cout<<"threadidis"<<pthread_self()<<endl;
pthread_mutex_lock(&mutex);
tmp=12;
cout<<"Nowais"<<tmp<<endl;
pthread_mutex_unlock(&mutex);
returnNULL;
}
intmain()
{
pthread_tid;
cout<<"mainthreadidis"<<pthread_self()<<endl;
tmp=3;
cout<<"Inmainfunctmp="<<tmp<<endl;
if(!pthread_create(&id,NULL,thread,NULL))
{
cout<<"Createthreadsuccess!"<<endl;
}
else
{
cout<<"Createthreadfailed!"<<endl;
}
pthread_join(id,NULL);
pthread_mutex_destroy(&mutex);
return0;
}
//编译:g++-othreadtestthread.cpp-lpthread

⑺ 有人能教下我有关linux里面线程的知识吗

.线程的基本介绍
(1)线程的概述
线程与进程类似,也允许应用程序并发执行多个任务的一种机制。一个进程可以包含多个线程,同一程序中的所有线程共享同一份全局内存区域,线程之间没有真正意义的等级之分。同一个进程中的线程可以并发执行,如果处理器是多核的话线程也可以并行执行,如果一个线程因为等待I/O操作而阻塞,那么其他线程依然可以继续运行
(2)线程优于进程的方面

argv,environ

主线程栈
线程3的栈
线程2的栈
线程1的栈
共享函数库共享的内存

未初始化的数据段
初始化数据段
文本
.进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用一些进程间通讯,在进程之间交换信息
.调用fork()来创建进程代价相对较高
线程很好的解决了上述俩个问题
.线程之间能够方便,快速的共享信息,只需将数据复制到共享(全局或堆)变量中即可
.创建线程比创建线程通常要快10甚至更多,线程创建之所以快,是因为fork创建进程时所需复制多个属性,而在线程中,这些属性是共享的。
(3)创建线程
启动程序时,产生的进程只有单条线程,我们称之为主线程
#include<pthread.h>
int pthread_create(pthread_t *thread,const pthread_attr_t *attr,void*(*start)(void *),void *arg);12

新线程通过调用带有arg的函数开始执行,调用pthread_create()的线程会继续执行该调用之后的语句。
(4)终止线程
可以以如下方式终止线程的运行
.线程调用pthread_exit()
.线程start函数执行return语句并返回指定值
.调用pthread_cancel()取消线程
.任意线程调用了exit(),或者主线程执行了return语句,都会导致进程中的所有线程立即终止
pthread_exit()函数可以终止线程,且其返回值可由另一线程通过调用pthread_join()获得
#include<pthread.h>void pthread_exit(void *retval);12

调用pthread_exit()相当于在线程的start函数中执行return,不同之处在于,pthread_exit()可以在任何地方调用,参数retval指定了线程的返回值
(5)获取线程ID
#include<pthread.h>pthread_t pthread_self(void);12

线程ID在应用程序中主要有如下用途
.不同的pthreads函数利用线程ID来标识要操作目标线程。
.在具体的应用程序中,以特定线程的线程ID作为动态数据结构的标签,这颇有用处,既可用来识别某个数据结构的创建者或属主线程,又可确定随后对该数据结构执行操作的具体线程
函数pthread_equal()可检查俩个线程的ID是否相同
#include<pthread.h>int pthread_equal(pthread_t t1,pthread_t t2);//如果相同返回非0值,否则返回0123

(6)连接已终止的线程
函数pthread_join()等待由thread表识的线程终止
#include<pthread.h>int pthread_join(pthread_t thread,void **retval);//返回0调用成功,否则失败123

如果pthread_join()传入一个之前已然连接过的线程ID,将会导致无法预知的行为,当相同线程ID在参与一次连接后恰好为另一新建线程所重用,再度连接的可能就是这个新线程
若线程未分离,则就应该使用pthread_join()来连接线程,否则会产生僵尸线程
pthrea_join()函数的要点
.线程之间的关系是对等的,所以任意线程都可以调用pthread_join()来连接其他线程
.pthread_join()无法针对任意线程,只能连接单个线程
(6)线程的分离
默认情况下线程都是可连接的,但有时候,我们并不关心线程退出的状态,我们可以调用pthread_detach()并向thread参数传入指定线程的的标识符,将该线程标记为处于分离状态
#include<pthread.h>int pthread_detach(pthread_t thread);//返回0成功,否则失败123

一旦线程处于分离状态,就不能在使用pthread_join()来获取其状态,也无法使其重返可连接状态
(7)在应用程序中如何来选择进程还是线程
.线程之间共享数据很简单,进程间的数据共享需要更多的投入
.创建线程要比创建进程块很多
.多线程编程时,需要确保调用线程安全的函数
.某个线程中的bug可能会危害进程中所有线程
.每个线程都在征用宿主进程中有限的虚拟地址空间
.在多线程应用中,需要小心使用信号
.除了数据,线程还可以共享文件描述符,信号处置,当前工作目录,以及用户ID和组ID
线程的同步
(1)保护共享变量访问:互斥量
线程的主要优势在于能够通过全局变量来共享信息,不过这种共享是有代价的。必须确保多个线程修改同一变量时,不会有其他线程也正在修改此变量,为避免线程更新时共享变量时所出现的问题,必须使用互斥量来确保同时仅有一个线程可以访问某项共享资源
(2)静态分配的互斥锁
互斥锁既可以像静态变量那样分配,也可以在运行时动态分配,互斥量属于pthread_mutex_t类型的变量,在使用之前必须对其初始化。对于静态分配的互斥量而言,可如下例所示,将PTHREAD_MUTEX_INITIALIZER赋给互斥量
pthread_mutex_t = PTHREAD_MUTEX_INITIALIZER;1

1.加锁和解锁互斥量
初始化之后,互斥量处于未锁定状态。函数pthread_mutex_lock()可以锁定某一互斥量
而函数pthread_mutex_unlock()则可以将一个互斥量解锁
#include<pthread.h>int pthread_mutex_lock(pthread_mutex_t *mutex);int pthread_mutex_unlock(pthread_mutex_t *mutex);//返回0成功,其他失败1234

要锁定互斥量,在调用pthread_mutex_lock()时需要指定互斥量,如果互斥量当前处于未锁定状态,则该调用将会立即返回,如果该互斥量已被其他线程锁定,那么该调用将会阻塞,直至互斥量被解锁
函数pthread_mutex_unlock()将解锁之前已遭调用线程锁定的互斥量
2.互斥量的性能
通常情况下,线程会花费更多的时间去做其他工作,对互斥量的加锁解锁相对要少的多,因此使用互斥量对大部分程序来说性能并无显着的影响
3.互斥量的死锁
当一个线程需要同时访问多个共享资源时,没个资源由不同的互斥索管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。如下图所示
线程A
1.pthread_mutex_lock(mutex1);
2.pthread_mutex_lock(mutex2);
线程2
1.pthread_mutex_lock(mutex2);
2.pthread_mutex_lock(mutex1);
每个线程都成功的锁住一个互斥量,接着试图对以为另一线程锁定的互斥量加锁,就会一直等下去
要避免此类死锁问题,最简单的就是定义互斥量的层级关系

⑻ linux下互斥锁mutex,貌似锁不上呢

多线程的效果就是同一时间各个线程都在执行。
加锁不是给线程上锁。

pthread_mutex_lock(&qlock);表示尝试去把qlock上锁,它会先判断qlock是否已经上锁,如果已经上锁这个线程就会停在这一步直到其他线程把锁解开。它才继续运行。
所以代码中要么是线程1先执行完后执行线程2,要么就是线程2先执行,再执行线程1.而线程3一开始就执行了。
互斥量mutex是用来给多线程之间的贡献资源上锁的。也就是同一个时间只允许一个线程去访问该资源(资源:比如对文件的写操作)。
现在来回答楼主的问题:
不是只要在pthread_mutex_lock(&qlock)与pthread_mutex_unlock(&qlock)之间的代码执行,其他的都不能介入吗?
其他的都不能介入,不是整个进程只运行这一个线程,其他线程都停住了。
“不能介入“这个动作需要程序员自己设计来保证:好比前面提到的文件读写操作。为了防止多个线程同时对文件进行写入操作,这就需要把资源上锁了。
如果只有线程1加锁,那是不是这个锁就没有意义了呢?
这个理解可以有

⑼ Linux C语言pthread_mutex_unlock和pthread_cond_signal顺序问题

signal前解锁是错误,顺序相当重要,锁才能保证你整个操作是完全原子,signal只是整个操作的一部分,它不能被分割出去。用特殊一点的情况来解释:如果解锁后才signal,那么有可能信号一直发不出去,因为信号线程一直得到不调度。

阅读全文

与linuxpthreadmutex相关的资料

热点内容
电脑文件夹压缩包格式 浏览:67
安卓堆糖怎么保存 浏览:358
multisim中单片机 浏览:603
加密电梯卡怎么复制到苹果手机上 浏览:304
php获取数据类型 浏览:915
新概念c51单片机 浏览:326
删除文件的命令行 浏览:981
java编程软件eclipse 浏览:198
番茄app怎么完成签约流程 浏览:725
ibm服务器如何进u盘启动 浏览:185
网络驱动重启命令 浏览:446
入职联想程序员 浏览:155
linux拷贝目录下所有文件 浏览:46
androidwebview测试 浏览:234
java数组效率 浏览:496
java我的世界怎么免费开服务器 浏览:520
被删了的app如何找回 浏览:358
冒险岛飞花院服务器什么时间开的 浏览:864
old引擎视频编译 浏览:936
三小虎语音包文件夹 浏览:169