❶ 基于51单片机的8通道数据采集系统的设计
都这么多久了还是没人来啊
❷ 51单片机实现程序的采集和发送
#include <reg51.h>
sbit led=P1^0;
void send_char(unsigned char txd)
// 传送一个字符
{
SBUF = txd;
while(!TI); // 等特数据传送
TI = 0; // 清除数据传送标志
}
main()
{
unsigned char tmp=0;
TMOD = 0x20; // 定时器1工作于8位自动重载模式, 用于产生波特率
TH1 = 0xFD; // 波特率9600
TL1 = 0xFD;
SCON = 0x50; // 设定串行口工作方式
PCON &= 0xef; // 波特率不倍增
TR1 = 1; // 启动定时器1
IE = 0x00; // 禁止任何中断
while(1)
{
tmp=led;
send_char(tmp);
}
❸ 需要用51单片机做一个数据采集系统,但是要求采样频率达到至少每秒2000次以上,请问51单片机可以做到么
肯定要速度快的单片机,比如带ADC的STC12单片机,用定时器设置好每秒中断2000次,每次启动ADC转换一次,这样就得到数据了。
当然要存储2000个数据还是问题,如果是8bit的结果,那需要2000字节,12bit结果要4000字节。所以要求单片机本身有很大的RAM或者要扩展RAM才行。但STC12内部才1024字节的RAM,肯定不够用,所以这时要用STC90C58AD了,4096字节的RAM。
如果用C8051F单片机,那更简单。比如C8051F的ADC0是100ksps,就是说连续转换时每秒能采样100000个数据,转换2000个是小菜一碟,只要设置好定时器以0.5毫秒触发一次ADC转换,再设置好ADC中断,这样1秒采集2000个数据没问题。
❹ 51单片机如何同时使用定时器和计数器采集数据
这是我根据频率计程序修的
//用定时计数器1作为脉冲计数器(P3.5引脚正是输入功能),定时器0作为定时器用,定时50ms产生中断
//中断4次后(即0.2s)读计数器1的数据
#include <reg52.h>
#define uint unsigned int
#define uchar unsigned char
//定义以I/O口的功能
sbit rs=P1^3;//液晶屏写选择,0命令 1数据
sbit rw=P1^4;//液晶屏读写选择
sbit lcden=P1^5;//液晶屏使能
#define db P2 //定义P2为数据输出口,写数据时用db代替P2,增加液晶屏程序的通用性
//更改硬件接线时,只更改此处,而不必去更改液晶屏读写子程序
uchar aa;//计中断次数
uint bb,cc,dd;//保存计数器的值
void Delay1ms(unsigned int i) //1ms延时程序
{
unsigned int j;
for(;i>0;i--)
{
for(j=0;j<125;j++)
{;}
}
}
void init()//初始化设置
{
TMOD=0x51;//定时器1作为计数器,定时器0作为定时器用
TH1=0;//计数器清0
TL1=0;
EA=1;//开总中断
ET0=1;//允许定时器0中断
TH0=0x4c;
TL0=0x5c;
TR1=1;//启动计数器
TR0=1;//启动定时器
aa=0;
}
void write_com(uchar com)//向液晶屏写命令
{
db=com;
rs=0;
rw = 0;
lcden=0;
Delay1ms(10*12);
lcden=1;
Delay1ms(10*12);
lcden=0;
}
void write_date(uchar date)//向液晶屏写数据
{
db=date;
rs=1;
rw = 0;
lcden=0;
Delay1ms(10*12);
lcden=1;
Delay1ms(10*12);
lcden=0;
}
void init2()//液晶屏初始化
{
rw=0;
write_com(0x38);//显示模式16字*2行,5*7点阵,数据口8位
Delay1ms(10*12);
write_com(0x0f);//开显示,显示光标,光标闪烁
Delay1ms(10*12);
write_com(0x06);//写完数据后数据指针和光标位置自动加1
Delay1ms(10*12);
write_com(0x01);//屏幕清除
Delay1ms(10*12);
}
void display4(unsigned int number) //单行多位显示程序
{
uchar A1,A2,A3,A4,A5;
init2();//液晶屏初始化
A1=number/10000%10;//分离出十万,万,千,百,十,个
A2=number/1000%10;
A3=number/100%10;
A4=number/10%10;
A5=number%10;
write_com(0x80);//第1个数据的位置设定,第1行第1列
Delay1ms(10);
write_date(0x30+A1);//写数据
Delay1ms(10);
write_date(0x30+A2);
Delay1ms(10);
write_date(0x30+A3);
Delay1ms(10);
write_date(0x30+A4);
Delay1ms(10);
write_date(0x30+A5);
Delay1ms(10);
}
void main()//主程序很简单
{
init();//初始化
while(1)//循环程序
{
dd=bb*256+cc;//0.2S的计数值
display4(dd);//显示
Delay1ms(100); //延时
}
}
void timer0()interrupt 1//注意:定时器0的中断序号为1
{
aa++;
TH0=0x4c;
TL0=0x5c;
if(aa==4)//中断4次,共0.2S
{
TR1=0;//暂停计数
aa=0;
bb=TH1;//读出计数器数据
cc=TL1;
TL1=0;//计数器清0
TH1=0;
TR1=1;//重新启动计数器
}
}
❺ 基于cs-51单片机的6通道数据采集器的设计
这么复杂的系统要说谁免费帮你我想是很不可能。找代做的付钱吧,要不就找点资料,自己来,遇到问题再提问小问题。不能这样全部的靠别人。我看这系统也不难,只是要全部做出来是得好几天的。
❻ 基于51单片机的多路数据采集系统
同意一楼的看法...这样读书,还不如不读
❼ 做一个基于51单片机的8路数据采集卡,然后用串口或者USB传输数据,麻烦各位大侠了!
进行下AD转换然后传入单片机。你有8路信号,分别转换,然后弄个数据选择器(这个不难做),逐个依次获取信号。把获取的数字信号通过串口传出去(串口在单片机上传输数据比较方便)
❽ 51单片机智能数据采集系统课程设计
//采集并返回
unsigned int Adc0832(unsigned char channel)
{
uchar i=0;
uchar j;
uint dat=0;
uchar ndat=0;
if(channel==0)channel=2;
if(channel==1)channel=3;
ADDI=1;
_nop_();
_nop_();
ADCS=0;//拉低CS端
_nop_();
_nop_();
ADCLK=1;//拉高CLK端
_nop_();
_nop_();
ADCLK=0;//拉低CLK端,形成下降沿1
_nop_();
_nop_();
ADCLK=1;//拉高CLK端
ADDI=channel&0x1;
_nop_();
_nop_();
ADCLK=0;//拉低CLK端,形成下降沿2
_nop_();
_nop_();
ADCLK=1;//拉高CLK端
ADDI=(channel>>1)&0x1;
_nop_();
_nop_();
ADCLK=0;//拉低CLK端,形成下降沿3
ADDI=1;//控制命令结束
_nop_();
_nop_();
dat=0;
for(i=0;i<8;i++)
{
dat|=ADDO;//收数据
ADCLK=1;
_nop_();
_nop_();
ADCLK=0;//形成一次时钟脉冲
_nop_();
_nop_();
dat<<=1;
if(i==7)dat|=ADDO;
}
for(i=0;i<8;i++)
{
j=0;
j=j|ADDO;//收数据
ADCLK=1;
_nop_();
_nop_();
ADCLK=0;//形成一次时钟脉冲
_nop_();
_nop_();
j=j<<7;
ndat=ndat|j;
if(i<7)ndat>>=1;
}
ADCS=1;//拉低CS端
ADCLK=0;//拉低CLK端
ADDO=1;//拉高数据端,回到初始状态
dat<<=8;
dat|=ndat;
return(dat); //return ad data
}int main(void)
{
while(1)
P3=Adc0832(0);
}
❾ 单片机如何实现多路模拟量的数据采集、显示
普通单片机实现多路模拟量的数据采集、显示需要:
外部连接一个多通道输入的ADC芯片,单片机按照一定的周期驱动模拟开关切换到不同的模拟通道,设计模数转换控制器的控制程序,可以进行定时模拟信号采集和显示。
(9)基于51单片机的数据采集扩展阅读:
单片机基本结构及作用:
1、运算器
运算器由运算部件——算术逻辑单元(Arithmetic & Logical Unit,简称ALU)、累加器和寄存器等几部分组成。ALU的作用是把传来的数据进行算术或逻辑运算,输入来源为两个8位数据,分别来自累加器和数据寄存器。
ALU能完成对这两个数据进行加、减、与、或、比较大小等操作,最后将结果存入累加器。
运算器有两个功能:
执行各种算术运算。
执行各种逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。
运算器所执行全部操作都是由控制器发出的控制信号来指挥的,并且,一个算术操作产生一个运算结果,一个逻辑操作产生一个判决。
2、控制器
控制器由程序计数器、指令寄存器、指令译码器、时序发生器和操作控制器等组成,是发布命令的“决策机构”,即协调和指挥整个微机系统的操作。其主要功能有:
从内存中取出一条指令,并指出下一条指令在内存中的位置。
对指令进行译码和测试,并产生相应的操作控制信号,以便于执行规定的动作。
指挥并控制CPU、内存和输入输出设备之间数据流动的方向。
微处理器内通过内部总线把ALU、计数器、寄存器和控制部分互联,并通过外部总线与外部的存储器、输入输出接口电路联接。外部总线又称为系统总线,分为数据总线DB、地址总线AB和控制总线CB。通过输入输出接口电路,实现与各种外围设备连接。
3、主要寄存器
累加器A
累加器A是微处理器中使用最频繁的寄存器。在算术和逻辑运算时它有双功能:运算前,用于保存一个操作数;运算后,用于保存所得的和、差或逻辑运算结果。
数据寄存器DR
数据寄存器通过数据总线向存储器和输入/输出设备送(写)或取(读)数据的暂存单元。它可以保存一条正在译码的指令,也可以保存正在送往存储器中存储的一个数据字节等等。
指令寄存器IR和指令译码器ID
指令包括操作码和操作数。
指令寄存器是用来保存当前正在执行的一条指令。当执行一条指令时,先把它从内存中取到数据寄存器中,然后再传送到指令寄存器。
当系统执行给定的指令时,必须对操作码进行译码,以确定所要求的操作,指令译码器就是负责这项工作的。其中,指令寄存器中操作码字段的输出就是指令译码器的输入。
程序计数器PC
PC用于确定下一条指令的地址,以保证程序能够连续地执行下去,因此通常又被称为指令地址计数器。在程序开始执行前必须将程序的第一条指令的内存单元地址(即程序的首地址)送入PC,使它总是指向下一条要执行指令的地址。
地址寄存器AR
地址寄存器用于保存当前CPU所要访问的内存单元或I/O设备的地址。由于内存与CPU之间存在着速度上的差异,所以必须使用地址寄存器来保持地址信息,直到内存读/写操作完成为止。
显然,当CPU向存储器存数据、CPU从内存取数据和CPU从内存读出指令时,都要用到地址寄存器和数据寄存器。同样,如果把外围设备的地址作为内存地址单元来看的话,那么当CPU和外围设备交换信息时,也需要用到地址寄存器和数据寄存器。