导航:首页 > 操作系统 > 基于单片机红外线计数器

基于单片机红外线计数器

发布时间:2022-08-31 22:54:18

㈠ 基于51单片机的红外接收模块的c编程

#include<reg52.h> //包含单片机寄存器的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
sbit IR=P3^2; //将IR位定义为P3.2引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
sbit BEEP = P3^6; //蜂鸣器控制端口P36
unsigned char flag;
unsigned char code string[ ]= {"1602IR-CODE TEST"};
unsigned char a[4]; //储存用户码、用户反码与键数据码、键数据反码
unsigned int LowTime,HighTime; //储存高、低电平的宽度
/*****************************************************
函数功能:延时1ms
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}

/*********************************************************/
void beep() //蜂鸣器响一声函数
{
unsigned char i;
for (i=0;i<100;i++)
{
delay1ms();
BEEP=!BEEP; //BEEP取反
}
BEEP=1; //关闭蜂鸣器
delay(250); //延时
}

/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0;
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x0C); //显示模式设置:显示开,有光标,光标闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}
/************************************************************
函数功能:对4个字节的用户码和键数据码进行解码
说明:解码正确,返回1,否则返回0
出口参数:dat
*************************************************************/
bit DeCode(void)
{

unsigned char i,j;
unsigned char temp; //储存解码出的数据
for(i=0;i<4;i++) //连续读取4个用户码和键数据码
{
for(j=0;j<8;j++) //每个码有8位数字
{
temp=temp>>1; //temp中的各数据位右移一位,因为先读出的是高位数据
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==0) //如果是低电平就等待
; //低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平宽度
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==1) //如果是高电平就等待
;
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存高电平宽度
if((LowTime<370)||(LowTime>640))
return 0; //如果低电平长度不在合理范围,则认为出错,停止解码
if((HighTime>420)&&(HighTime<620)) //如果高电平时间在560微秒左右,即计数560/1.085=516次
temp=temp&0x7f; //(520-100=420, 520+100=620),则该位是0
if((HighTime>1300)&&(HighTime<1800)) //如果高电平时间在1680微秒左右,即计数1680/1.085=1548次
temp=temp|0x80; //(1550-250=1300,1550+250=1800),则该位是1
}
a[i]=temp; //将解码出的字节值储存在a[i]
}
if(a[2]=~a[3]) //验证键数据码和其反码是否相等,一般情况下不必验证用户码
return 1; //解码正确,返回1
}

/*------------------二进制码转换为压缩型BCD码,并显示---------------*/

void two_2_bcd(unsigned char date)
{

unsigned char temp;
temp=date;
date&=0xf0;
date>>=4; //右移四位得到高四位码
date&=0x0f; //与0x0f想与确保高四位为0
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示键值高四位
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
date=temp;
date&=0x0f;
if(date<=0x09)
{
WriteData(0x30+date); //lcd显示低四位值
}
else
{
date=date-0x09;
WriteData(0x40+date);
}
WriteData(0x48); //显示字符'H'
}
/************************************************************
函数功能:1602LCD显示
*************************************************************/
void Disp(void)
{
WriteAddress(0x40); // 设置显示位置为第一行的第1个字
two_2_bcd(a[0]);
WriteData(0x20);
two_2_bcd(a[1]);
WriteData(0x20);
two_2_bcd(a[2]);
WriteData(0x20);
two_2_bcd(a[3]);

}
/************************************************************
函数功能:主函数
*************************************************************/
void main()
{
unsigned char i;
LcdInitiate(); //调用LCD初始化函数
delay(10);
WriteInstruction(0x01);//清显示:清屏幕指令
WriteAddress(0x00); // 设置显示位置为第一行的第1个字
i = 0;
while(string[i] != '\0') //'\0'是数组结束标志
{ // 显示字符 www.RICHMCU.COM
WriteData(string[i]);
i++;
}
EA=1; //开启总中断
EX0=1; //开外中断0
ET0=1; //定时器T0中断允许
IT0=1; //外中断的下降沿触发
TMOD=0x01; //使用定时器T0的模式1
TR0=0; //定时器T0关闭
while(1); //等待红外信号产生的中断

}
/************************************************************
函数功能:红外线触发的外中断处理函数
*************************************************************/
void Int0(void) interrupt 0
{
EX0=0; //关闭外中断0,不再接收二次红外信号的中断,只解码当前红外信号
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==0); //如果是低电平就等待,给引导码低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平时间
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==1); //如果是高电平就等待,给引导码高电平计时
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存引导码的高电平长度
if((LowTime>7800)&&(LowTime<8800)&&(HighTime>3600)&&(HighTime<4700))
{
//如果是引导码,就开始解码,否则放弃,引导码的低电平计时
//次数=9000us/1.085=8294, 判断区间:8300-500=7800,8300+500=8800.
if(DeCode()==1) // 执行遥控解码功能
{

Disp();//调用1602LCD显示函数
beep();//蜂鸣器响一声 提示解码成功
}
}
EX0=1; //开启外中断EX0
}

㈡ 基于单片机的光电传感器的计数器设计

计数显示电路可完成对上述脉冲信号的计数和显示。图3是由单片机构成的计数系统框图。 计数系统以MCS-51系列单片机的8031为核心,8013单片机的外围扩展了程序存储器27C256和数据存储器WM0016DRH,此外,用8255扩展了I/O口,同时具有时钟单元、掉电保护、看门狗单元、通信单元以及LED(发光二极管)显示器、键盘等。 1)8031单片机及存储器 8031内含4kb EEPROM程序存储器,具有功耗低、抗干扰能力强的特点,可安置于监测现场,数据存储器WM0016DRH是一种多功能非易失性SRAM,特点如下:高速高抗干扰自保持,不怕掉电,上下电百万次数据无丢失,断电保护10年有效,既可高速连续读写,也可任意地址单字节操作,无需拼凑页面,随机读写不需等待,立即有效,输入输出TTL/CMOS兼容,上电复位输出,掉电保护,内置看门狗,电源监测,不用外加电路和电池,且引脚与标准SRAM兼容。 2)计数及显示 多车道车流量数对应的脉冲通过光电隔离耦合并行输入至8031单片机的P1口,通过软件控制和键盘设定计数值并用LED加以显示,可自动循环显示或定点显示两种方式,且两者相互间可任意切换[4]。 当热释电传感器安装位置固定后,输入脉冲的脉宽和占空比均取决于高速公路上车辆的车速和车距(脉宽对应车辆传感器有效监视方位内的时间,车速和车距有限定),占空比q小于50%,为了准确拾取车流量信息,通过软件可实现单片机对每一路并行输入数据的读取周期小于脉宽,且将每路各自相邻的两读取周期读取的数据进行运算(暂存前一个周期读取的数据),若两数据为01,则自动计1,否则计0。其中0为前一个周期的读取数据,此时脉冲为低电平,1为后一个周期的读取数据,此时脉冲为高电平,从而避免了对脉冲的漏计和重复计数,再把4路的读数每一周期进行一次加运算,累加后的和就是总的车流量。 将8031单片机内的定时器/计数器设定为工作方式1,构成16位二进制计数器[5],采用动态扫描方式直接驱动5位十进制计数器[5]。采用动态扫描方式直接驱动5位十进制LED显示,最大计数值达到65536,可记录4车辆的车流量并显示一个月内的日流量,累计4车道一个月内的日流量总和,计数器内数据保护时间可达一个月之久。当计数器达到设定值时,声光报警,可存储数据,并手动复位。 3)时钟单元 采用DS12C887实时时钟芯片,具有显示具体时间信息的功能,若设计调整和设置按键,可方便地对时间进行调整和设置,从而为车流量的统计提供准确的时间数据。 4)串行通信单元 由于单片机系统的数据存储能力和数据处理能力有限,以及现场实时性要求较高,故单片机现场只能暂时存储采集到的数据和对数据进行简单处理,至于大量的数据存储和后续复杂的数据处理可交给上位机完成,由于大型机具有RS-232标准串行口,所以通过8031单片机TTL电平全双工串行口,附加RS-232电平转换电路MAX3232可与上位机实现数据通信。 3 软件设计 计数系统的程序主要包括系统自检程序、系统初始化程序、键盘扫描程序、按键处理程序、显示程序以及数据采集处理程序等,图4所示为主程序流程。 4 安装与调试

㈢ 求红外线计数器c语言程序

#include<reg51.h>
#include<intrins.h>
#define NOP _nop_()
#define KEY_PRESS
#include "WIN24C02.H"
unsigned char code table[]={0x03,0x9F,0x25,0x0D,0x99,0x49,0x41,0x1F,0x01,0x09,0x11,0xC1,0x63,0x85,0x61,0x71};
///////////////////////////////

#define uchar unsigned char
uchar times=0;
uchar dis_buf[4]={0};
uchar key_flag=0;
uchar key_cnt=0;
uchar exint_flag=0;
uchar buzzer_cnt=0;
uchar int_flag=0;
unsigned int int_cnt=0;
///////////////////////////////////
sbit ir_Inction=P1^0;
sbit ming=P3^7;
sbit ir_s=P3^2;
sbit iic_sda=P0^5;
sbit iic_clk=P0^4;
unsigned int ir_num=0;
sfr isp_wdt = 0xE1;
sfr isp_data = 0xE2;
sfr isp_addrh = 0xE3;
sfr isp_addrl = 0xE4;
sfr isp_cmd = 0xE5;
sfr isp_trig = 0xE6;
sfr isp_contr = 0xE7;
/*****************************************/

/***************STC89CXX_EEPROM扇区擦除程序*************************/
void STC89CXX_EEPROM_Erase(unsigned char t_addr)
{
isp_addrh = t_addr; //可以不要 扇区里任意一个字节的地址都是扇区地址,无需求首地址,单片机会自己处理
isp_addrl = 0;
// EA = 0; //关中断
isp_contr = 0x81;
isp_cmd = 3; //扇区擦除,要某字节为空,必须擦除1个扇区
isp_trig = 0x46; //先送0x46再送 0xb9 ISP/IAP 触发寄存器,每次都需要如此
isp_trig = 0xb9; //送完0xb9后 ISP/IAP 立即被触发启动

// EA = 1;

// 开中断
}
/***********************************************/

void STC89CXX_EEPROM_Char_Write(unsigned int Write_addr ,unsigned int Write_data)
{

isp_data = (Write_data>>8)&0xff;
isp_addrh = Write_addr/256; //送地址高位
isp_addrl = Write_addr%256; //地址低位
// EA = 0; /* 关中断 */
isp_contr = 0x81;
isp_cmd = 2; //送扇区命令
isp_trig = 0x46;
isp_trig = 0xb9;

isp_data = Write_data&0xff;
isp_addrl = (Write_addr+1)%256;
isp_contr = 0x81;
isp_cmd = 2; //送扇区命令
isp_trig = 0x46;
isp_trig = 0xb9;

// EA = 1;

/* 开中断 */

}
/**************************************************************/
unsigned int STC89CXX_EEPROM_Char_Read(unsigned int Read_addr)
{

unsigned int temp=0;
isp_addrh = Read_addr/256; //送地址高字节
isp_addrl = Read_addr%256; //送地址低字节(从0开始到num-1为止)
// EA = 0; /* 关中断 */
isp_contr = 0x81; /*20M,是0x80 orl 1 */
isp_cmd = 1; // 1表示字节读
isp_trig = 0x46; //先送0x46再送 0xb9 ISP/IAP 触发寄存器,每次都需要如此
isp_trig = 0xb9; //送完0xb9后 ISP/IAP 立即被触发启动
temp= (isp_data<<8);
isp_addrl = (Read_addr+1)%256;
isp_contr = 0x81; /*20M,是0x80 orl 1 */
isp_cmd = 1; // 1表示字节读
isp_trig = 0x46; //先送0x46再送 0xb9 ISP/IAP 触发寄存器,每次都需要如此
isp_trig = 0xb9;
temp|=isp_data;
// EA = 1; //空指令

/* 开中断 */
return(temp);

}
static void iic_start()
{
iic_sda=1;
iic_clk=1;
NOP;
iic_sda=0;
iic_clk=0;
}
static void iic_stop()
{
iic_clk=0;
iic_sda=0;
iic_clk=1;
NOP;
iic_sda=1;
}
static void iic_write_byte(uchar dat)
{
uchar i;
for(i=0;i<8;i++)
{
iic_clk=0;
iic_sda=dat&0x80;
NOP;
iic_clk=1;
NOP;
dat<<=1;
}
iic_clk=0;
}
static uchar recive_ack()
{
uchar i=0;
iic_clk=0;
NOP;
//iic_sda=1;
NOP;
iic_clk=1;
NOP;
NOP;
while(iic_sda);
iic_clk=0;
// if(i==200)
// return 0 ;
//else
return 1;
}
static void send_ack()
{

uchar i=0;
iic_sda=1;
NOP;
iic_clk=0;
NOP;
iic_sda=0;
NOP;
iic_clk=1;
NOP;
iic_clk=0;
iic_sda=1;

}
void iic_write(uchar addr,uchar dat)
{
iic_start();
iic_write_byte(0xa0);
recive_ack();
iic_write_byte(addr);
recive_ack();
iic_write_byte(dat);
recive_ack();
iic_stop();
}
static uchar iic_read_byte()
{
uchar i;
uchar dat=0;
for(i=0;i<8;i++)
{
// iic_sda=0;
dat<<=1;
iic_clk=0;
NOP;
iic_clk=1;
NOP;
dat|=iic_sda;
}
iic_clk=0;
return dat;
}
uchar iic_read(uchar addr)
{
uchar dat;
iic_start();
iic_write_byte(0xa0);
recive_ack();
iic_write_byte(addr);
recive_ack();
iic_start();
iic_write_byte(0xa1);
recive_ack();
dat=iic_read_byte();
iic_stop();
return dat;
}
void delay(unsigned int z)
{
unsigned int x,y;
for(x=z;x>0;x--)
{
for(y=100;y>0;y--);
}

}
void iic_writes(uchar addr,void *buf,uchar num)
{
uchar i;
uchar *pt=(uchar *)buf;
for(i=0;i<num;i++)
{
iic_write(addr+i,pt[i]);
delay(10);
}
}
void iic_reads(uchar addr,void *buf,uchar num)
{
uchar i;
uchar *pt=(uchar *)buf;
for(i=0;i<num;i++)
{
pt[i]=iic_read(addr+i);
//delay(3);
}
}

sbit KEY1=P3^6;
unsigned char i_com=0x88;
//unsigned char flag=0;

void timer0_init()
{
TMOD=0x11;
TH0=0xfd;
TL0=0x80;
ET0=1;
TR0=1;
TH1=0xfd;
TL1=0x80;
ET1=1;
TR1=1;

}

void ch_value( )
{
dis_buf[0]=(ir_num/1000)%10;
dis_buf[1]=(ir_num/100)%10;
dis_buf[2]=(ir_num/10)%10;
dis_buf[3]=(ir_num)%10;
}
void timer0_isq()interrupt 1
{
TH0=0xf8;
TL0=0x84;
P2=0xff;
P0= (8>>(times));
P2=table[dis_buf[times]];
times=++times%4;
}
void display()
{
P2=0xff;
P0= (i_com>>(0));
P2=table[dis_buf[0]];
delay(3);
P2=0xff;
P0= (i_com>>(1));
P2=table[dis_buf[1]];
delay(3);
P2=0xff;
P0= (i_com>>(2));
P2=table[dis_buf[2]];
delay(3);
P2=0xff;
P0= (i_com>>(3));
P2=table[dis_buf[3]];
delay(3);

}
void int_0() interrupt 0
{

// EA=0;
//display();
exint_flag=1;
int_flag=1;
EX0=0;
ir_num++;
#ifdef KEY_PRESS
// IE0=0;

#endif

// EA=1;
}
void timer1_isq()interrupt 3
{
TH1=0xfa;
TL1=0x84;
if(key_flag&&(++key_cnt==10))
{
if(KEY1)
{
key_flag=0;
}
key_cnt=0;
}
if(int_flag&&(++int_cnt==20))
{
#ifdef KEY_PRESS
if(ir_s)
#else
if(!ir_s)
#endif
{
int_flag=0;
}
int_cnt=0;
}
if(exint_flag)
{
ming=0;
}
if(exint_flag&&(++buzzer_cnt==40))
{
ming=1;
buzzer_cnt=0;
exint_flag=0;
}
}
void main()
{

delay(500);
timer0_init();
WIN24C02_init(); //24c02初始化子程序
EX0=1;
IT0=1;
IE0=0;
EA=1;
PT0=1;
// ir_num=STC89CXX_EEPROM_Char_Read(0x2000);
iic_reads(0x10,&ir_num,2);
//ir_num=WIN24C02_read(0x00)|(WIN24C02_read(0x01)<<8);
ch_value();
while(1)
{
if(ir_s==1)
{
ir_s=0;
}
ch_value();
//display();
if(!EX0)
{
if(ir_num>=9999)
ir_num=0;
iic_writes(0x10,&ir_num,2);
while(int_flag&&KEY1);//display();
//STC89CXX_EEPROM_Erase(0x20);
//STC89CXX_EEPROM_Char_Write(0x2000,ir_num);//存数据到EEPROM

// WIN24C02_write(0x00,ir_num&0xff);
// WIN24C02_write(0x01,(ir_num>>8)&0xff);

//IE0=0;
ch_value();
#ifdef KEY_PRESS
IE0=0;
#else

IE0=0;
#endif
EX0=1;
}

if(!KEY1)
{
// display();
EX0=0;
ir_num=0;
//STC89CXX_EEPROM_Erase(0x20);
//STC89CXX_EEPROM_Char_Write(0x2000,ir_num);//存数据到EEPROM
iic_writes(0x10,&ir_num,2);
// WIN24C02_write(0x00,ir_num&0xff);
// WIN24C02_write(0x01,(ir_num>>8)&0xff);
ch_value();
// EA=1;
while(!KEY1);

IE0=0;
EX0=1;

}

}

}

㈣ 急求单片机红外对管计数器设计 实现:每计数100蜂鸣器响1s,可以复位到0重新计数,时刻显示数目。

电路图和汇编程序

㈤ 红外线计数器原理是什么

红外线计数器分为对射式和反射式2种电路,对射是一个发射头和一个接收头在中间如有物件通过就遮挡一下光线,就输出一个脉冲信号触发一下计数电路,反射式红外线是把发射头和接收头做在一块成为一个红外探头,当探头前有一个物件出现就把发射头的红外线反射给接收头,探头输出一个脉冲给计数器计数

㈥ 课程设计:红外遥控解码器(基于单片机AT89C51),能同过数码管把相应的按键显示出来~ 各位高手帮帮忙

//实例97:用红外遥控器控制继电器
#include<reg51.h> //包含单片机寄存器的头文件
sbit IR=P3^2; //将IR位定义为P3.2引脚
unsigned char a[4]; //储存用户码、用户反码与键数据码、键数据反码
unsigned int LowTime,HighTime; //储存高、低电平的宽度
sbit Relay=P1^3; //将Relay位定义为P1.3引脚
/************************************************************
函数功能:对4个字节的用户码和键数据码进行解码
说明:解码正确,返回1,否则返回0
出口参数:dat
*************************************************************/
bit DeCode(void)
{

unsigned char i,j;
unsigned char temp; //储存解码出的数据
for(i=0;i<4;i++) //连续读取4个用户码和键数据码
{
for(j=0;j<8;j++) //每个码有8位数字
{
temp=temp>>1; //temp中的各数据位右移一位,因为先读出的是高位数据
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==0) //如果是低电平就等待
; //低电平计时
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平宽度
TH0=0; //定时器清0
TL0=0; //定时器清0
TR0=1; //开启定时器T0
while(IR==1) //如果是高电平就等待
;
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存高电平宽度
if((LowTime<370)||(LowTime>640))
return 0; //如果低电平长度不在合理范围,则认为出错,停止解码
if((HighTime>420)&&(HighTime<620)) //如果高电平时间在560微秒左右,即计数560/1.085=516次
temp=temp&0x7f; //(520-100=420, 520+100=620),则该位是0
if((HighTime>1300)&&(HighTime<1800)) //如果高电平时间在1680微秒左右,即计数1680/1.085=1548次
temp=temp|0x80; //(1550-250=1300,1550+250=1800),则该位是1
}
a[i]=temp; //将解码出的字节值储存在a[i]
}
if(a[2]=~a[3]) //验证键数据码和其反码是否相等,一般情况下不必验证用户码
return 1; //解码正确,返回1
}
/************************************************************
函数功能:执行遥控功能
*************************************************************/
void Function(void)
{
Relay=!Relay; //对P1.3引脚取反,控制继电器的吸合、释放

}
/************************************************************
函数功能:主函数
*************************************************************/
void main()
{
EA=1; //开启总中断
EX0=1; //开外中断0
ET0=1; //定时器T0中断允许
IT0=1; //外中断的下降沿触发
TMOD=0x01; //使用定时器T0的模式1
TR0=0; //定时器T0关闭
while(1) //等待红外信号产生的中断
;
}
/************************************************************
函数功能:红外线触发的外中断处理函数
*************************************************************/
void Int0(void) interrupt 0 using 0
{
EX0=0; //关闭外中断0,不再接收二次红外信号的中断,只解码当前红外信号
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==0) //如果是低电平就等待,给引导码低电平计时
;
TR0=0; //关闭定时器T0
LowTime=TH0*256+TL0; //保存低电平时间
TH0=0; //定时器T0的高8位清0
TL0=0; //定时器T0的低8位清0
TR0=1; //开启定时器T0
while(IR==1) //如果是高电平就等待,给引导码高电平计时
;
TR0=0; //关闭定时器T0
HighTime=TH0*256+TL0; //保存引导码的高电平长度
if((LowTime>7800)&&(LowTime<8800)&&(HighTime>3600)&&(HighTime<4700))
{
//如果是引导码,就开始解码,否则放弃,引导码的低电平计时
//次数=9000us/1.085=8294, 判断区间:8300-500=7800,8300+500=8800.
if(DeCode()==1)
Function(); //如果满足条件,执行遥控功能
}
EX0=1; //开启外中断EX0
}

㈦ 想做一个红外线计数器,不同方向实行不同加减,

红外线室内人数统计系统的设计方法。设计理念是有两组红外线发射和接收系统组成,将信号传递给控制单片机,由其判断两组信号的触发顺序来给出室内人数是增加还是减少,然后将结果控制LCD液晶显示模块显示。本系统基本实现了数字控制,可分为四个模块:单片机控制模块、恒流驱动电源模块、红外线发射和接收模块、LCD液晶显示模块。单片机控制模块主要以MSP430F2274单片机为核心,主要由555定时器构成的多谐振荡器给红外线发射38KHz脉冲信号,单片机通过对接收到的信号进行运算处理,将信号转为LCD显示屏显示。恒流驱动电源模块主要给整个电路提供合适的工作电压。

㈧ 基于单片机的红外线计数器

能1:般指示灯
能2:D12发红外线供检测器检测
接电阻R13目限流D12般要超20mA,
4.7K般330欧姆或更即
换用其端口般考虑放排线便

㈨ 我要用红外线接受器和51单片机做一个计数器,用哪种型号的红外线接收器好

光敏二极管,三极管都行啊。光敏三极管的灵敏度会高一些。光敏二极管比较便宜,应用广泛。看看这个吧:http://www.ikalogic.com/ir_prox_sensors.php

㈩ 红外计数器原理图及程序

gfhfghfghfhfg

阅读全文

与基于单片机红外线计数器相关的资料

热点内容
电脑编程属于it吗 浏览:353
如何分辨文件夹 浏览:714
哪里能学懂通达信每个源码的含义 浏览:833
命令式过去式形式 浏览:450
车铣复合铣六角编程实例 浏览:743
android通知的呼吸灯 浏览:907
单片机排针的功能 浏览:849
华为的服务器现在被什么公司收购 浏览:285
服务器粘包怎么处理 浏览:726
怎么进创意工坊的服务器 浏览:786
空调压缩机加变频器 浏览:968
加密货币有哪些可以玩 浏览:993
腾讯云服务器如何生成备案授权码 浏览:950
计算机学算法好还是人工智能 浏览:500
java命令运行eclipse 浏览:979
u盘加密其他办法 浏览:808
zm螺纹算法 浏览:778
excel与数据分析pdf 浏览:153
特斯拉的智能算法 浏览:204
单片机开发费用 浏览:937