❶ 单片机液晶控制,关于直接访问和间接访问
这个问题是从单片机的角度来说的。
所谓直接访问就是访问LCD控制器就像访问MCU的外部扩展RAM一样(可以直接用一条movx指令读写数据),所以数据一定要接在P0口上,同时要考虑控制译码,支持ALE、RD、WR、PSEN、EA等控制信号。
而间接访问是说LCD控制器当做MCU的端口来用,所以数据可以接在任何Px口上,但程序访问要麻烦一点,例如输出时将数据放在Px口上之后,还要程序给出控制信号通知LCD控制器“取走”等等。
总之,一个硬件复杂一点但编程简单,另一个硬件简单但编程稍烦。
❷ 单片机的液晶显示有什么作用
作用就是人机界面啦,主要就是用来控制操作单片机或者显示单片机工作状态的。
你可以网络一下广州锐显科技,他们的液晶做得不错。
❸ 用C51单片机控制液位一般需要那些元件
信号输入
需要采集液位的高低,可以用浮漂触碰开关,开关信号引入单片机;
也可以用液位传感器,压力原理的、红外原理的、超声波原理的等有很多种,根据需要选择,然后引入单片机。
信号输出
需要控制液体通断的开关,或控制电机或变频器启动/停止的接触器等。
一般控制方法
达到高水位停机,低于低水位开机。
❹ 单片机 液晶显示温度 程序
DS18B20温度检测及其液晶显示
#include<reg51.h> //包含单片机寄存器的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
unsigned char code digit[10]={"0123456789"}; //定义字符数组显示数字
unsigned char code Str[]={"Test by DS18B20"}; //说明显示的是温度
unsigned char code Error[]={"Error!Check!"}; //说明没有检测到DS18B20
unsigned char code Temp[]={"Temp:"}; //说明显示的是温度
unsigned char code Cent[]={"Cent"}; //温度单位
/*******************************************************************************
以下是对液晶模块的操作程序
*******************************************************************************/
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delaynms(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
bit BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delaynms(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38); //连续三次,确保初始化成功
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delaynms(5); //延时5ms,给硬件一点反应时间
}
/************************************************************************
以下是DS18B20的操作程序
************************************************************************/
sbit DQ=P3^3;
unsigned char time; //设置全局变量,专门用于严格延时
/*****************************************************
函数功能:将DS18B20传感器初始化,读取应答信号
出口参数:flag
***************************************************/
bit Init_DS18B20(void)
{
bit flag; //储存DS18B20是否存在的标志,flag=0,表示存在;flag=1,表示不存在
DQ = 1; //先将数据线拉高
for(time=0;time<2;time++) //略微延时约6微秒
;
DQ = 0; //再将数据线从高拉低,要求保持480~960us
for(time=0;time<200;time++) //略微延时约600微秒
; //以向DS18B20发出一持续480~960us的低电平复位脉冲
DQ = 1; //释放数据线(将数据线拉高)
for(time=0;time<10;time++)
; //延时约30us(释放总线后需等待15~60us让DS18B20输出存在脉冲)
flag=DQ; //让单片机检测是否输出了存在脉冲(DQ=0表示存在)
for(time=0;time<200;time++) //延时足够长时间,等待存在脉冲输出完毕
;
return (flag); //返回检测成功标志
}
/*****************************************************
函数功能:从DS18B20读取一个字节数据
出口参数:dat
***************************************************/
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat; //储存读出的一个字节数据
for (i=0;i<8;i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ = 0; //单片机从DS18B20读书据时,将数据线从高拉低即启动读时序
dat>>=1;
_nop_(); //等待一个机器周期
DQ = 1; //将数据线"人为"拉高,为单片机检测DS18B20的输出电平作准备
for(time=0;time<2;time++)
; //延时约6us,使主机在15us内采样
if(DQ==1)
dat|=0x80; //如果读到的数据是1,则将1存入dat
else
dat|=0x00;//如果读到的数据是0,则将0存入dat
//将单片机检测到的电平信号DQ存入r[i]
for(time=0;time<8;time++)
; //延时3us,两个读时序之间必须有大于1us的恢复期
}
return(dat); //返回读出的十进制数据
}
/*****************************************************
函数功能:向DS18B20写入一个字节数据
入口参数:dat
***************************************************/
WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=0; i<8; i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ=0; //将数据线从高拉低时即启动写时序
DQ=dat&0x01; //利用与运算取出要写的某位二进制数据,
//并将其送到数据线上等待DS18B20采样
for(time=0;time<10;time++)
;//延时约30us,DS18B20在拉低后的约15~60us期间从数据线上采样
DQ=1; //释放数据线
for(time=0;time<1;time++)
;//延时3us,两个写时序间至少需要1us的恢复期
dat>>=1; //将dat中的各二进制位数据右移1位
}
for(time=0;time<4;time++)
; //稍作延时,给硬件一点反应时间
}
/******************************************************************************
以下是与温度有关的显示设置
******************************************************************************/
/*****************************************************
函数功能:显示没有检测到DS18B20
***************************************************/
void display_error(void)
{
unsigned char i;
WriteAddress(0x00); //写显示地址,将在第1行第1列开始显示
i = 0; //从第一个字符开始显示
while(Error[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Error[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(100); //延时100ms较长时间,以看清关于显示的说明
}
while(1) //进入死循环,等待查明原因
;
}
/*****************************************************
函数功能:显示说明信息
***************************************************/
void display_explain(void)
{
unsigned char i;
WriteAddress(0x00); //写显示地址,将在第1行第1列开始显示
i = 0; //从第一个字符开始显示
while(Str[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Str[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(100); //延时100ms较长时间,以看清关于显示的说明
}
}
/*****************************************************
函数功能:显示温度符号
***************************************************/
void display_symbol(void)
{
unsigned char i;
WriteAddress(0x40); //写显示地址,将在第2行第1列开始显示
i = 0; //从第一个字符开始显示
while(Temp[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Temp[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(50); //延时1ms给硬件一点反应时间
}
}
/*****************************************************
函数功能:显示温度的小数点
***************************************************/
void display_dot(void)
{
WriteAddress(0x49); //写显示地址,将在第2行第10列开始显示
WriteData('.'); //将小数点的字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:显示温度的单位(Cent)
***************************************************/
void display_cent(void)
{
unsigned char i;
WriteAddress(0x4c); //写显示地址,将在第2行第13列开始显示
i = 0; //从第一个字符开始显示
while(Cent[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Cent[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(50); //延时1ms给硬件一点反应时间
}
}
/*****************************************************
函数功能:显示温度的整数部分
入口参数:x
***************************************************/
void display_temp1(unsigned char x)
{
unsigned char j,k,l; //j,k,l分别储存温度的百位、十位和个位
j=x/100; //取百位
k=(x%100)/10; //取十位
l=x%10; //取个位
WriteAddress(0x46); //写显示地址,将在第2行第7列开始显示
WriteData(digit[j]); //将百位数字的字符常量写入LCD
WriteData(digit[k]); //将十位数字的字符常量写入LCD
WriteData(digit[l]); //将个位数字的字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:显示温度的小数数部分
入口参数:x
***************************************************/
void display_temp2(unsigned char x)
{
WriteAddress(0x4a); //写显示地址,将在第2行第11列开始显示
WriteData(digit[x]); //将小数部分的第一位数字字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:做好读温度的准备
***************************************************/
void ReadyReadTemp(void)
{
Init_DS18B20(); //将DS18B20初始化
WriteOneChar(0xCC); // 跳过读序号列号的操作
WriteOneChar(0x44); // 启动温度转换
for(time=0;time<100;time++)
; //温度转换需要一点时间
Init_DS18B20(); //将DS18B20初始化
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器,前两个分别是温度的低位和高位
}
/*****************************************************
函数功能:主函数
***************************************************/
void main(void)
{
unsigned char TL; //储存暂存器的温度低位
unsigned char TH; //储存暂存器的温度高位
unsigned char TN; //储存温度的整数部分
unsigned char TD; //储存温度的小数部分
LcdInitiate(); //将液晶初始化
delaynms(5); //延时5ms给硬件一点反应时间
if(Init_DS18B20()==1)
display_error();
display_explain();
display_symbol(); //显示温度说明
display_dot(); //显示温度的小数点
display_cent(); //显示温度的单位
while(1) //不断检测并显示温度
{
ReadyReadTemp(); //读温度准备
TL=ReadOneChar(); //先读的是温度值低位
TH=ReadOneChar(); //接着读的是温度值高位
TN=TH*16+TL/16; //实际温度值=(TH*256+TL)/16,即:TH*16+TL/16
//这样得出的是温度的整数部分,小数部分被丢弃了
TD=(TL%16)*10/16; //计算温度的小数部分,将余数乘以10再除以16取整,
//这样得到的是温度小数部分的第一位数字(保留1位小数)
display_temp1(TN); //显示温度的整数部分
display_temp2(TD); //显示温度的小数部分
delaynms(10);
}
}
记得改改哈!!
❺ 单片机控制液晶屏显示
解决方法:1.单片机更换为5V的单片机;2.液晶更换为3.3V的液晶;3.将单片机管脚高电平抬高至5V。
原因说明:我们现在所用的绝大多数的可编程芯片(这里面包含了你的单片机和液晶驱动芯片)均为CMOS芯片。5V供电的液晶屏,内部搭载了5V的CMOS驱动芯片来让液晶屏显示东西。CMOS器件有这样一个规定:高电平,即数字信号“1”的电压范围是3.5V-5V,低电平,即数字信号“0”的电压范围是0-1.5V。在这两个电压范围之外的,CMOS芯片将无法判别是高电平还是低电平。
所以,3.3V的单片机在输出低电平时可以被液晶CMOS芯片识别,而输出高电平时,单片机管脚为3.3V(单片机的工作电压3.3V,无法输出更高的电压)这不在CMOS期间的电平识别范围内,无法判别信号是0还是1。所以,液晶工作不正常。
❻ 最简单c51单片机液晶显示程序
光看代码你是不能了解它的使用历程的,最好看看使用手册,下面的代码是用1602液晶
#include<reg52.h>
#define uchar unsigned char
#define uint unsigned int
uchar code table[]="I LIKE MCU!";
uchar code table1[]="www.TXMCU.COM";
sbit lcden=P3^4;
sbit lcdrs=P3^5;
sbit la=P2^6;
sbit wela=P2^7;
uchar num;
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}
void write_com(uchar com)
{
lcdrs=0;
P0=com;
delay(5);
lcden=1;
delay(5);
lcden=0;
}
void write_data(uchar date)
{
lcdrs=1;
P0=date;
delay(5);
lcden=1;
delay(5);
lcden=0;
}
void init()
{
la=0;
wela=0;
lcden=0;
write_com(0x38);
write_com(0x0e);
write_com(0x06);
write_com(0x01);
write_com(0x80+0x10);
}
void main()
{
init();
for(num=0;num<11;num++)
{
write_data(table[num]);
delay(20);
}
// write_com(1);
write_com(0x80+0x53);
for(num=0;num<13;num++)
{
write_data(table1[num]);
delay(20);
}
for(num=0;num<16;num++)
{
write_com(0x18);
delay(20);
}
while(1);
}
❼ 基于单片机的液位检测系统的设计与制作
做设计很费时间、精力的,一点分很难实现
❽ 各位朋友,谁能给小弟介绍片有关单片机液位控制方面的论文 谢谢了
产品简介: 浮球开关是一种结构简单,使用方便,安全可靠的液位控制器,它具有比一般机械开关体积小,速度快,工作寿命长,抗负载冲击能力强等特点,其在造船,造纸,印刷,发电机设备,塑料辅机,石油化工,食品工业,水处理,电工,染料工业,油压机械等方面都得到了广泛的应用.
工作原理: 在密封的非导磁性管内安装一个或多个干簧管,然后将此管穿过一个或多个中空且内部有环形磁铁的浮球,液位的上升或下降会带动浮球一起移动,从而使该非导磁性管内的干簧管产生吸合和断开的动作,并输出一个开关信号.
本厂专业生产各种金属型,塑料型液位计,液位开关!
025-85552278 85552840 黄先生
❾ 单片机液位计课程设计怎么做
1.借助机械式弄浮利用杠杆原理端接滑变阻器测量电阻或者电压值知道前液位高度
2.利用超声测距买超声波传器测量液体表面传器间距离测量利用单片机测量超声发间接收反射波间间差利用间乘声波速率除二实际液面高度
❿ 单片机液位检测系统设计
无语了,到现在才做~~
单片机可以使用8位的51系列,用AT、AVR、C8051的都无所谓,因为是毕业设计不用考虑成本以及EMC,所以没什么关系。用16位的也可以比如凌阳的SPCE061A、MSP430的都可以,看你比较熟悉哪种了~~
液位传感器有那种利用超波测量液位的,价钱从几十到几百不等。
还有就是利用红外传感器检测液位的。不同点在于红外传感器需要有物理刻度标尺,超声波不需要。
其他的器件就比较简单了,有个放大电路和降噪过滤电路、需要一个显示电路的话再加个玻璃,需要语音再加个喇叭~~