❶ 单片机可以用来做什么-单片机的应用范围
单片机可以用来做什么-单片机的应用范围
单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。下面,我为大家分享单片机的应用范围,希望对大家有所帮助!
家用电器
家用电器广泛采用了单片机控制,从电饭煲、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备和白色家电等。
网络和通信
现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。
设备领域
单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。
智能仪器
单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、电流、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。
例如精密的测量设备(电压表、功率计,示波器,各种分析仪)。
汽车电子
单片机在汽车电子中的'应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器、GPS导航系统、abs防抱死系统、制动系统、胎压检测等。
工业控制
单片机具有体积小、控制功能强、功耗低、环境适应能力强、扩展灵活和使用方便等优点,用单片机可以构成形式多样的控制系统、数据采集系统、通信系统、信号检测系统、无线感知系统、测控系统、机器人等应用控制系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。
模块化系统
某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。
在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。
此外,单片机在工商、金融、科研、教育、电力、通信、物流和国防航空航天等领域都有着十分广泛的用途。
;❷ 单片机C语言程序中,For语句如何灵活使用
单片机的C语言与我们其它的C语言,语法上没有区别(它都是标准的C语法)
它的for与其它C语言的for完全一样的,标准的写法
for(初始条件;循环条件;循环变量处理)
且每个都个省的,如你可以这样写
for(;;)
具体使用可参考任何一本C++教材有关for循环部分
❸ 80c51单片机的特点
8051片内有4kROM,无须外接外存储器和373,更能体现“单片”的简练。但是编程者编的程序编程者无法烧写到其ROM中,只有将程序交芯片厂代编程者烧写,并是一次性的,今后编程者和芯片厂都不能改写其内容。
8031片内不带程序存储器ROM,使用时用户需外接程序存储器和一片逻辑电路373,外接的程序存储器多为EPROM的2764系列。用户若想对写入到EPROM中的程序进行修改,必须先用一种特殊的紫外线灯将其照射擦除,之后再可写入。写入到外接程序存储器的程序代码没有什么保密性可言。
(3)单片机使用灵活扩展阅读
1、从内部的硬件到软件有一套完整的按位操作系统,处理对象不是字或字节而是位。不但能对片内某些特殊功能寄存器的某位进行处理,如传送、置位、清零、测试等,还能进行位的逻辑运算,其功能十分完备,使用起来得心应手。
2、同时在片内RAM区间还特别开辟了一个双重功能的地址区间,使用极为灵活,这一功能无疑给使用者提供了极大的方便。
3、乘法和除法指令,这给编程也带来了便利。很多的八位单片机都不具备乘**能,作乘法时还得编上一段子程序调用,十分不便。
❹ 简单描述单片机应用场合有哪些
单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。
单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:
智能仪器
单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、电流、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(电压表、功率计,示波器,各种分析仪)。
工业控制
单片机具有体积小、控制功能强、功耗低、环境适应能力强、扩展灵活和使用方便等优点,用单片机可以构成形式多样的控制系统、数据采集系统、通信系统、信号检测系统、无线感知系统、测控系统、机器人等应用控制系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。
家用电器
家用电器广泛采用了单片机控制,从电饭煲、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备和白色家电等。
网络和通信
现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。
设备领域
单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。
模块化系统
某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。
汽车电子
单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器、GPS导航系统、abs防抱死系统、制动系统、胎压检测等。
此外,单片机在工商、金融、科研、教育、电力、通信、物流和国防航空航天等领域都有着十分广泛的用途。
❺ 单片机解释
单片机自动完成赋予它的任务的过程,也就是单片机执行程序的过程,即一条条执行的指令的过程,所谓指令就是把要求单片机执行的各种操作用的命令的形式写下来,这是在设计人员赋予它的指令系统所决定的,一条指令对应着一种基本操作;单片机所能执行的全部指令,就是该单片机的指令系统,不同种类的单片机,其指令系统亦不同。为使单片机能自动完成某一特定任务,必须把要解决的问题编成一系列指令(这些指令必须是选定单片机能识别和执行的指令),这一系列指令的集合就成为程序,程序需要预先存放在具有存储功能的部件——存储器中。存储器由许多存储单元(最小的存储单位)组成,就像大楼房有许多房间组成一样,指令就存放在这些单元里,单元里的指令取出并执行就像大楼房的每个房间的被分配到了唯一一个房间号一样,每一个存储单元也必须被分配到唯一的地址号,该地址号称为存储单元的地址,这样只要知道了存储单元的地址,就可以找到这个存储单元,其中存储的指令就可以被取出,然后再被执行。 程序通常是顺序执行的,所以程序中的指令也是一条条顺序存放的,单片机在执行程序时要能把这些指令一条条取出并加以执行,必须有一个部件能追踪指令所在的地址,这一部件就是程序计数器PC(包含在CPU中),在开始执行程序时,给PC赋以程序中第一条指令所在的地址,然后取得每一条要执行的命令,PC在中的内容就会自动增加,增加量由本条指令长度决定,可能是1、2或3,以指向下一条指令的起始地址,保证指令顺序执行。 单片机介绍 单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可......用它来做一些控制电器一类不是很复杂的工作足矣了。我们现在用的全自动滚筒洗衣机、排烟罩、VCD等等的家电里面都可以看到它的身影!......它主要是作为控制部分的核心部件。 它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。 单片机芯片
单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性! 由于单片机对成本是敏感的,所以目前占统治地位的软件还是最低级汇编语言,它是除了二进制机器码以上最低级的语言了,既然这么低级为什么还要用呢?很多高级的语言已经达到了可视化编程的水平为什么不用呢?原因很简单,就是单片机没有家用计算机那样的CPU,也没有像硬盘那样的海量存储设备。一个可视化高级语言编写的小程序里面即使只有一个按钮,也会达到几十K的尺寸!对于家用PC的硬盘来讲没什么,可是对于单片机来讲是不能接受的。 单片机在硬件资源方面的利用率必须很高才行,所以汇编虽然原始却还是在大量使用。一样的道理,如果把巨型计算机上的操作系统和应用软件拿到家用PC上来运行,家用PC的也是承受不了的。 可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。不过,这种电脑,通常是指个人计算机,简称PC机。它由主机、键盘、显示器等组成。还有一类计算机,大多数人却不怎么熟悉。这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。因为它体积小,通常都藏在被控机械的“肚子”里。它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。
编辑本段单片机历史
单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
单片机的基本结构
单片机由运算器、控制器、存储器、输入输出设备构成
起初模型
1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。 Micro Controller Unit
2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最着名的厂家当数Philips公司。 Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
嵌入式系统
单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
单片机发展史
[2] 1971年intel公司研制出世界上第一个4位的微处理器;Intel公司的霍夫研制成功世界上第一块4位微处理器芯片Intel 4004,标志着第一代微处理器问世,微处理器和微机时代从此开始。因发明微处理器,霍夫被英国《经济学家》杂志列为“二战以来最有影响力的7位科学家”之一 。 1971年11月,Intel推出MCS-4微型计算机系统(包括4001 ROM芯片、4002 RAM芯片、4003移位寄存器芯片和4004微处理器 )其中4004(下图)包含2300个晶体管,尺寸规格为3mm×4mm,计算性能远远超过当年的ENIAC,最初售价为200美元。 1972年4月,霍夫等人开发出第一个8位微处理器Intel 8008。由于8008采用的是P沟道MOS微处理器,因此仍属第一代微处理器。 1973年intel公司研制出8位的微处理器8080;1973年8月,霍夫等人研制出8位微处理器Intel 8080,以N沟道MOS电路取代了P沟道,第二代微处理器就此诞生。 主频2MHz的8080芯片运算速度比8008快10倍,可存取64KB存储器,使用了基于6微米技术的6000个晶体管,处理速度为0.64MIPS(Million Instructions Per Second )。 1975年4月,MITS发布第一个通用型Altair 8800,售价375美元,带有1KB存储器。这是世界上第一台微型计算机。 1976年intel公司研制出MCS-48系列8位的单片机,这也是单片机的问世。 Zilog公司于1976年开发的Z80微处理器,广泛用于微型计算机和工业自动控制设备。当时,Zilog、Motorola和Intel在微处理器领域三足鼎立。 20世纪80年代初,Intel公司在MCS-48系列单片机的基础上,推出了MCS-51系列8位高档单片机。MCS-51系列单片机无论是片内RAM容量,I/O口功能,系统扩展方面都有了很大的提高。
编辑本段单片机的硬件特性
1、单片机集成度高。单片机包括CPU、4KB容量的ROM(8031 无)、128 B容量的RAM、 2个16位定时/计数器、4个8位并行口、全双工串口行口。 2、系统结构简单,使用方便,实现模块化; 3、单片机可靠性高,可工作到10^6 ~10^7小时无故障; 4、处理功能强,速度快。
编辑本段单片机的应用
单片机的应用 目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。 单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴: 1.在智能仪器仪表上的应用 单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(功率计,示波器,各种分析仪)。 2.在工业控制中的应用 用单片机可以构成形式多样的控制系统、数据采集系统。例如工厂流水线的智能化管 芯片
理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。 3.在家用电器中的应用 可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭煲、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。 4.在计算机网络和通信领域中的应用 现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。 5.单片机在医用设备领域中的应用 单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。 6.在各种大型电器中的模块化应用 某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。 在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。 7.单片机在汽车设备领域中的应用 单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器,GPS导航系统,abs防抱死系统,制动系统等等。 此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。
编辑本段学习应用六大重要部分
单片机学习应用的六大重要部分
一、总线:
我们知道,一个电路总是由元器件通过电线连接而成的,在模拟电路中,连线并不成为一个问题,因为各器件间一般是串行关系,各器件之间的连线并不很多,但计算机电路却不一样,它是以微处理器为核心,各器件都要与微处理器相连,各器件之间的工作必须相互协调,所以需要的连线就很多了,如果仍如同模拟电路一样,在各微处理器和各器件间单独连线,则线的数量将多得惊人,所以在微处理机中引入了总线的概念,各个器件共同享用连线,所有器件的8根数据线全部接到8根公用的线上,即相当于各个器件并联起来,但仅这样还不行,如果有两个器件同时送出数据,一个为0,一个为1,那么,接收方接收到的究竟是什么呢?这种情况是不允许的,所以要通过控制线进行控制,使器件分时工作,任何时候只能有一个器件发送数据(可以有多个器件同时接收)。器件的数据线也就被称为数据总线,器件所有的控制线被称为控制总线。在单片机内部或者外部存储器及其它器件中有存储单元,这些存储单元要被分配地址,才能使用,分配地址当然也是以电信号的形式给出的,由于存储单元比较多,所以,用于地址分配的线也较多,这些线被称为地址总线。
二、数据、地址、指令:
之所以将这三者放在一起,是因为这三者的本质都是一样的——数字,或者说都是一串‘0’和‘1’组成的序列。换言之,地址、指令也都是数据。指令:由单片机芯片的设计者规定的一种数字,它与我们常用的指令助记符有着严格的一一对应关系,不可以由单片机的开发者更改。地址:是寻找单片机内部、外部的存储单元、输入输出口的依据,内部单元的地址值已由芯片设计者规定好,不可更改,外部的单元可以由单片机开发者自行决定,但有一些地址单元是一定要有的(详见程序的执行过程)。数据:这是由微处理机处理的对象,在各种不同的应用电路中各不相同,一般而言,被处理的数据可能有这么几种情况: 1?地址(如MOV DPTR,1000H),即地址1000H送入DPTR。 2?方式字或控制字(如MOV TMOD,#3),3即是控制字。 3?常数(如MOV TH0,#10H)10H即定时常数。 4?实际输出值(如P1口接彩灯,要灯全亮,则执行指令:MOV P1,#0FFH,要灯全暗,则执行指令:MOV P1,#00H)这里0FFH和00H都是实际输出值。又如用于LED的字形码,也是实际输出的值。 理解了地址、指令的本质,就不难理解程序运行过程中为什么会跑飞,会把数据当成指令来执行了。
三、P0口、P2口和P3的第二功能用法:
初学时往往对P0口、P2口和P3口的第二功能用法迷惑不解,认为第二功能和原功能之间要有一个切换的过程,或者说要有一条指令,事实上,各端口的第二功能完全是自动的,不需要用指令来转换。如P3.6、P3.7分别是WR、RD信号,当微片理机外接RAM或有外部I/O口时,它们被用作第二功能,不能作为通用I/O口使用,只要一微处理机一执行到MOVX指令,就会有相应的信号从P3.6或P3.7送出,不需要事先用指令说明。事实上‘不能作为通用I/O口使用’也并不是‘不能’而是(使用者)‘不会’将其作为通用I/O口使用。你完全可以在指令中按排一条SETB P3.7的指令,并且当单片机执行到这条指令时,也会使P3.7变为高电平,但使用者不会这么去做,因为这通常会导致系统的崩溃。
四、程序的执行过程:
单片机在通电复位后8051内的程序计数器(PC)中的值为‘0000’,所以程序总是从‘0000’单元开始执行,也就是说:在系统的ROM中一定要存在‘0000’这个单元,并且在‘0000’单元中存放的一定是一条指令。
五、堆栈:
堆栈是一个区域,是用来存放数据的,这个区域本身没有任何特殊之处,就是内部RAM的一部份,特殊的是它存放和取用数据的方式,即所谓的‘先进后出,后进先出’,并且堆栈有特殊的数据传输指令,即‘PUSH’和‘POP’,有一个特殊的专为其服务的单元,即堆栈指针SP,每当执一次PUSH指令时,SP就(在原来值的基础上)自动加1,每当执行一次POP指令,SP就(在原来值的基础上)自动减1。由于SP中的值可以用指令加以改变,所以只要在程序开始阶段更改了SP的值,就可以把堆栈设置在规定的内存单元中,如在程序开始时,用一条MOV SP,#5FH指令,就是把堆栈设置在从内存单元60H开始的单元中。一般程序的开头总有这么一条设置堆栈指针的指令,因为开机时,SP的初始值为07H,这样就使堆栈从08H单元开始往后,而08H到1FH这个区域正是8031的第二、三、四工作寄存器区,经常要被使用,这会造成数据的混乱。不同作者编写程序时,初始化堆栈指令也不完全相同,这是作者的习惯问题。当设置好堆栈区后,并不意味着该区域成为一种专用内存,它还是可以象普通内存区域一样使用,只是一般情况下编程者不会把它当成普通内存用了。
六、单片机的开发过程:
这里所说的开发过程并不是一般书中所说的从任务分析开始,我们假设已设计并制作好硬件,下面就是编写软件的工作。在编写软件之前,首先要确定一些常数、地址,事实上这些常数、地址在设计阶段已被直接或间接地确定下来了。如当某器件的连线设计好后,其地址也就被确定了,当器件的功能被确定下来后,其控制字也就被确定了。然后用文本编辑器(如EDIT、CCED等)编写软件,编写好后,用编译器对源程序文件编译,查错,直到没有语法错误,除了极简单的程序外,一般应用仿真机对软件进行调试,直到程序运行正确为止。运行正确后,就可以写片(将程序固化在EPROM中)。在源程序被编译后,生成了扩展名为HEX的目标文件,一般编程器能够识别这种格式的文件,只要将此文件调入即可写片。在此,为使大家对整个过程有个认识,举一例说明: 单片机试验板
ORG 0000H LJMP START ORG 040H START: MOV SP,#5FH ;设堆栈 LOOP: NOP LJMP LOOP ;循环 END ;结束
编辑本段单片机学习
目前,很多人对汇编语言并不认可。可以说,掌握用C语言单片机编程很重要,可以大大提高开发的效率。不过初学者可以不了解单片机的汇编语言,但一定要了解单片机具体性能和特点,不然在单片机领域是比较致命的。如果不考虑单片机硬件资源,在KEIL中用C胡乱编程,结果只能是出了问题无法解决!可以肯定的说,最好的C语言单片机工程师都是从汇编走出来的编程者,因为单片机的C语言虽然是高级语言,但是它不同于台式机个人电脑上的VC++什么的。单片机的硬件资源不是非常强大,不同于我们用VC、VB等高级语言在台式PC上写程序,毕竟台式电脑的硬件非常强大,所以才可以不考虑硬件资源的问题。还有就是在单片机编程中C语言虽然编程方便,便于人们阅读,但是在执行效率上是要比汇编语言低10%到20%,所以用什么语言编写程序是要看具体用在什么场合下。总的来说做单片机编程要灵活使用汇编语言与C语言,让单片机的强大功能以最高是效率展示给用户。 以8051单片机为例讲解单片机的引脚及相关功能; 《单片机引脚图》 40个引脚按引脚功能大致可分为4个种类:电源、时钟、控制和I/O引脚。 ⒈ 电源: ⑴ VCC - 芯片电源,接+5V; ⑵ VSS - 接地端; 注:用万用表测试单片机引脚电压一般为0v或者5v,这是标准的TTL电平。但有时候在单片机程序正在工作时候测试结果并不是这个值而是介于0v-5v之间,其实这是万用表的响应速度没这么快而已,在某一个瞬间单片机引脚电压仍保持在0v或者5v。 ⒉ 时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊ 控制线:控制线共有4根, ⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ① ALE功能:用来锁存P0口送出的低8位地址 ② PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 ⑵ PSEN:外ROM读选通信号。 ⑶ RST/VPD:复位/备用电源。 ① RST(Reset)功能:复位信号输入端。 ② VPD功能:在Vcc掉电情况下,接备用电源。 ⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。 ① EA功能:内外ROM选择端。 ② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋ I/O线 80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。 P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线) 5. P3口第二功能 P30 RXD 串行输入口 P31 TXD 串行输出口 P32 INT0 外部中断0(低电平有效) P33 INT1 外部中断1(低电平有效) P34 T0 定时计数器0 P35 T1 定时计数器1 P36 WR 外部数据存储器写选通(低电平有效) P37 RD 外部数据存储器读选通(低电平有效)
❻ 一、单片机有什么特点,为什么成为低端控制系统的主要处理器之一
集成度高;存储容量大;外部扩展能力强;控制功能强。 1、从内部的硬件到软件有一套完整的按位操作系统,称作位处理器,处理对象不是字或字节而是位。不但能对片内某些特殊功能寄存器的某位进行处理,如传送、置位、清零、测试等,还能进行位的逻辑运算,其功能十分完备,使用起来得心应手。 2、同时在片内RAM区间还特别开辟了一个双重功能的地址区间,使用极为灵活,这一功能无疑给使用者提供了极大的方便。 3、乘法和除法指令,这给编程也带来了便利。很多的八位单片机都不具备乘法功能,作乘法时还得编上一段子程序调用,十分不便。”
❼ 51单片机的优缺点
一、51单片机
应用最广泛的8位单片机当然也是初学者们最容易上手学习的单片机,最早由Intel推出,由于其典型的结构和完善的总线专用寄存器的集中管理,众多的逻辑位操作功能及面向控制的丰富的指令系统,堪称为一代“经典”,为以后的其它单片机的发展奠定了基础。
51单片机之所以成为经典,成为易上手的单片机主要有以下特点:
特性
1、从内部的硬件到软件有一套完整的按位操作系统,称作位处理器,处理对象不是字或字节而是位。不但能对片内某些特殊功能寄存器的某位进行处理,如传送、置位、清零、测试等,还能进行位的逻辑运算,其功能十分完备,使用起来得心应手。
2、同时在片内RAM区间还特别开辟了一个双重功能的地址区间,使用极为灵活,这一功能无疑给使用者提供了极大的方便。
3、乘法和除法指令,这给编程也带来了便利。很多的八位单片机都不具备乘**能,作乘法时还得编上一段子程序调用,十分不便。
缺点
(虽然是经典但是缺点还是很明显的)
1、AD、EEPROM等功能需要靠扩展,增加了硬件和软件负担
2、虽然I/O脚使用简单,但高电平时无输出能力,这也是51系列单片机的最大软肋
3、运行速度过慢,特别是双数据指针,如能改进能给编程带来很大的便利
4、51单片机保护能力很差,很容易烧坏芯片
应用范围:目前在教学场合和对性能要求不高的场合大量被采用。
使用最多的器件:8051、80C51
❽ 为什么说单片机技术已经成为电子应用系统设计最为常用的手段
这是因为单片机应用灵活,开发方便且成本低廉,可以在很多应用中以软代硬解决原本需要大量硬线数字逻辑电路才能解决的问题,可以大大简化硬件电路方案提高可靠性,特别随着单片机技术的发展,各种配置及封装类型的扩展,为在各类项目中应用单片机提供了条件,可以毫不夸张地说单片机已成为各种应用解决方案的灵魂首选。
❾ 单片机的特点及应用
基本特点如下:
1、芯片虽小,五脏俱全,是单片机主要特点之一。其内部设有程序存储器、数据存储器、各种接口电路。而大型的处理器运算速度较高,运算器位数较多,处理能力较强,但需要在外部配置接口电路。
2、单片机主频一般在100MHZ以下,适合用于独立工作的小型产品之中,引脚数量从几个到百余个。
3、应用简单、灵活,可用汇编语言及C语言开发单片机产品。
例如:精控-定时程序控制器就是基于单片机技术开发的自动化控制产品。
❿ 计算机专业数字逻辑电路时序逻辑图
现在电气工程及其自动化的触角已伸向各行各业,小到一个开关的设计,大到宇航飞机的研究,都有它的身影。电气控制技术的发展走过了几个比较有代表性的阶段,了解这几个有代表性的发展阶段及其特点,对于学习电气控制柜的制作有很大帮助。
开关控制电器阶段
早期的电气控制都比较简单,主要是实现电器与电源之间的通断控制。由于当时的电器电压不是很高,电流不是很大,所以开关普遍采用裸露的非封闭形式,因此称为可见断点的开关。可见断点的开关因为其接通和断开状态一目了然,从心理上可以给人安全感,而且实际上在断开状态下也确实是安全的。比较有代表性的开关电器就是刀开关,至今仍然在普遍使用。
早期的刀开关一般由人直接操作,开关的通断速度不可能很快,因此只能用于低压且电流不太大的控制场合。因为电压较高及电流较大的开关在接通和断开的过程中会产生强烈的电弧,电弧会将开关的接触部分烧坏,电弧还会危及操作者的人身安全。为了解决电弧的危害,一是在开关上采用机械速动装置,减少产生电弧的时间;二是采用灭弧装置,减小电弧并降低电弧的温度;三是将开关用外壳完全封闭起来,避免对人的伤害;四是利用杠杆机构操作开关,使人处于安全位置;五是采用电动操作机构,实现开关的远距离操控和自动控制。
为了安全起见,根据国家标准,一般电气控制中的隔离开关应采用可见断点的开关。对于全封闭型开关及远距离操控开关,必须在操作器件上醒目地标示出开关接通和断开位置。对于自动控制开关,则必须在操作后有检测开关通断状态的反馈信号显示,以确保操作的可靠性和安全性。
继电控制电器阶段
“继电保护”是输变电过程中的一种专门技术,是由各种继电器及量测设备组成的保护电路,目的是保证持续不间断供电。“继电保护”技术的发展为电气自动控制技术的发展奠定了基础。
继电控制是利用具有继电特性的元件进行控制的自动控制系统。所谓继电特性是指,在输入信号作用下输出仅为通、断等几个状态的特性。由于其控制方式是断续的,故称为断续控制系统。例如,电炉温度调节中,根据炉温是否超过规定值而断开或接通电源。这种只有通、断两个状态的控制又称双位式控制。继电控制中使用的元件并不限于电磁式继电器,也可用别的手段来实现继电特性。例如,在双位式温度调节中,常采用双金属片作为敏感元件,温度变化时双金属片因两部分金属的膨胀系数不同而弯曲变形,接通或断开触点。液压和气动阀等也是具有继电特性的元件。
各种接触器、继电器的使用,对电气控制技术的发展具有决定性的意义。各种接触器、继电器的操作方式彻底颠覆了开关设备只能近身操作的观念,开启了远距离电气操作的时代。继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。继电器除具有开关功能外,还具有比较多的其他控制功能,这些功能为实现电气自动控制立下了汗马功劳。继电器与早期的开关电器相比具有以下特点。
1.具有记忆功能
利用继电器的接点可以连接成自保持电路,即使控制信号消失,继电器仍然可以保持控制指令的状态,这就是继电器的记忆功能。继电器的记忆功能是实现自动控制的基本条件,在电气自动控制中应用相当普遍。
2.动作速度快
继电器的动作一般由电磁铁控制,其动作速度一般只有零点几秒。继电器的动作速度比其他机械结构的开关电器快,有利于减小电弧,用于电压较高、电流较大的控制场合。
3.可以实现较远距离控制
继电器的控制回路中电流很小,因此在控制回路导线截面积一定的情况下,电压降很小,所以可以进行较远距离的控制。
4.可以实现非电量的控制
利用时间继电器可以实现对时间的控制;利用速度继电器可以实现对速度的控制;利用温度继电器可以实现对温度的控制;利用干簧式或磁保持继电器可以实现对磁场的控制;利用步进继电器可以实现顺序控制等。继电器对非电量的控制,较大地扩展了电气自动控制的应用领域。
5.具有放大作用
继电器利用工作电流很小的控制回路控制通断能力很大的主接点,可以控制很大功率的电路,因此继电器具有放大作用。
6.可以实现各种保护
1)失电压保护和欠电压保护
利用继电器电磁铁线圈在失电压和欠电压状态时不能吸合的特点,实现失电压保护和欠电压保护。
2)过电压保护
利用电压继电器可以实现过电压保护。
3)短路保护、过电流保护和过载保护
利用热继电器可以实现短路保护、过电流保护和过载保护。
4)断相保护
断相后其余两相的电流必然增大,利用热继电器或电流继电器可以实现断相保护。
7.可以实现监测功能
根据每一个继电器的控制功能,其接点连接上信号灯和电铃,就可以显示控制电路各个部分的工作状态,并可以实现故障显示、报警和监测功能。
8.扩大控制范围
多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、断开、接通多路电路。
9.综合信号功能
根据电气控制逻辑的需要,将多个控制信号按规定(串联、并联或混联)的形式输入多绕组继电器时,经过比较、综合,实现预定的控制目标。
正是由于继电器具有上述强大功能,自动装置上的继电器与其他电器一起可以组成程序控制线路,从而实现自动化运行。正是由于继电器的出现,人类才第一次实现了电气控制自动化。因此,继电器的运用在电气控制的发展史上具有里程碑的意义。
继电器接触式控制系统具有控制结构简单、方便实用、易于维护、控制容量大、抗干扰能力强、价格低廉等优点,继电控制系统的主要优点是控制装置比较简单。对于同样的功率,继电控制装置的质量和体积在各类控制系统中是比较小的,因此广泛应用于各类设备的电气控制。目前,继电器接触式控制仍然是电气控制设备最基本的控制形式之一,继电器-接触器控制系统至今仍在许多生产机械设备中广泛采用。
继电控制系统的主要缺点是控制的非线性。但也存在接线方式固定、灵活性差、难以适应复杂和程序可变的控制对象的要求,另外还有工作频率低的问题。由于继电控制系统的电气接点太多,接点的锈蚀、烧蚀、熔合及接触不良,使继电控制系统的故障率较高,存在可靠性差的问题。同时继电器的线圈耗电量很大,既不符合当代绿色环保要求,又不易实现电气控制设备小型化的要求。
数字逻辑控制阶段
开关电器和继电器控制的实质就是开关量的控制,因为只有接通“1”和断开“0”两个状态。
这里所讲的数字逻辑控制阶段是指,集成电路普遍采用以后,使用逻辑门电路进行的数字逻辑控制。尽管继电控制系统也可以进行一些比较简单的数字逻辑控制,但是由于继电控制系统实现这些逻辑电路结构十分复杂、成本高且可靠性差,并且存在难以避免的时序上的竞争问题,要解决这一问题,对设计人员的要求很高,最终往往需要通过实验才能解决。
在实际生产中,由于大量存在一些用开关量控制的简单的程序控制过程,而实际生产工艺和流程又是经常变化的,因而传统的继电器接触式控制系统通常不能满足这种要求,因此曾出现了继电器接触控制和电子技术相结合的控制装置,叫作顺序控制器。它能根据生产需要改变控制程序,而又远比电子计算机结构简单、价格低廉,它是通过组合逻辑元件插接来实现继电器接触控制的。但装置体积大,功能也受到一定限制。
集成电路的逻辑门芯片具有体积小、质量轻、耗电量小、工作可靠的特点。集成的各种门电路、触发器、寄存器、编码器、译码器和半导体存储器组成组合逻辑电路和时序逻辑电路广泛应用在电气自动控制中,并且比较成功地解决了组合逻辑电路的竞争—冒险现象。
数字逻辑控制阶段最为成功的案例是数控机床的应用。为解决占机械总加工量80%左右的单件和小批量生产的自动化难题,20世纪50年代出现了数控机床。它综合应用了数字逻辑控制、检测、自动控制和机床结构设计等各个技术领域的最新技术成就。数控机床由控制介质、数控装置、伺服系统和机床本体等部分组成,其中伺服系统的性能是决定数控机床加工精度和生产率的主要因素之一。
电子计算机控制阶段
1971年,Intel公司设计了世界上第一个微处理器芯片Intel 4004,并以它为核心组成了世界上第一台微型计算机MCS-4。它开创了计算机应用的新时代。但是将普通PC直接移植于电气控制系统,存在系统过于复杂、成本太高的问题。直到专门为工业控制而设计的单片机诞生,这一问题才得以解决。
1.单片机
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把整个计算机系统集成到一个芯片上。概括地讲,一块芯片就是一台计算机。它的体积小、质量轻、价格便宜、软件可修改、为应用和开发提供了便利条件。利用单片机可以实现柔性控制、通信技术、多目标控制、仿真与智能控制。
单片机虽然具有强大的功能,但是它的价格很低(一般在十元以内)。低廉的价格和强大的功能为单片机在电气控制领域内的应用创造了条件。目前,单片机的使用领域已十分广泛,如智能仪表、实时工控、通信设备、导航系统、家用电器等。
单片机的最小系统只用一片集成电路,它作为控制部分的核心部件,可进行简单的运算和控制。因为它体积小,通常都藏在被控设备的“肚子”内。一个单片机系统的最低价格只有几十元。单片机控制系统使用灵活,多用于有一定生产批量、专业性比较强、市场面不是很大的领域。因为如果市场面很大,生产批量大,就会有更加经济的专用控制芯片生产出来。单片机控制系统比较适宜小批量生产及在旧设备技术改造中应用。
2.可编程逻辑控制器(PLC)
随着大规模集成电路和微处理机技术的发展及应用,电气控制技术也发生了根本性的变化,在20世纪70年代,出现了将计算机存储技术引入顺序控制器,产生了新型工业控制器—可编程序控制器(PLC),它兼备了计算机控制和继电器控制系统两方面的优点,故目前在世界各国已作为一种标准化通用电器普遍应用于工业自动控制领域。
可编程控制器技术是以硬接线的继电器-接触器控制为基础,逐步发展为既有逻辑控制、计时、计数,又有运算、数据处理、模拟量调节、连网通信等功能的控制装置。它可通过数字量或模拟量的输入、输出满足各种类型设备控制的需要。可编程控制器及有关外部设备,均按既易于与工业控制系统组成一个整体,又易于扩充其功能的原则设计。可编程控制器已成为生产机械设备中开关量控制的主要电气控制装置。
可编程逻辑控制器(PLC)是利用单片机技术由模仿原继电器控制原理发展起来的,20世纪70年代的PLC只有开关量逻辑控制,首先应用的是汽车制造行业。它用来存储执行逻辑运算、顺序控制、定时、计数和运算等操作的指令,并通过数字输入和输出操作,来控制各类机械或生产过程。用户编制的控制程序表达了生产过程的工艺要求,并事先存入PLC的用户程序存储器中。运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。PLC的CPU内有指示程序存储地址的程序计数器,在程序运行过程中,每执行一步该计数器自动加1,程序从起始步(步序号为零)起依次执行到最终步(通常为END指令),再返回起始步循环运算。PLC每完成一次循环操作所需的时间称为一个扫描周期。
不同型号的PLC,循环扫描周期在1μs到几十μs之间。PLC用梯形图编程,在计算逻辑方面,表现出快速的优点,扫描周期在微秒量级,计算1KB逻辑程序用时不到1ms。它把所有的输入都当成开关量来处理,16位(也有32位的)为一个模拟量。大型PLC使用另外一个CPU来完成模拟量的运算,把计算结果传送给PLC的控制器。
对于相同I/O点数的系统,用PLC比用计算机集中控制系统(DCS)的成本要低一些(大约能省40%)。PLC没有专用操作站,它用的软件和硬件都是通用的,所以维护成本比DCS要低很多。一个大型的PLC控制器可以接收几千个I/O点(最多可达8000多个I/O)。如果被控对象主要是设备连锁、回路很少,采用小型PLC较为合适。PLC由于采用通用软件,在设计企业的管理信息系统方面要容易一些。
通用PLC应用于专用设备时,可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而言具有更高的可靠性和更好的稳定性。可编程控制器作为离散控制的首选产品,以微处理器为核心,通过软件手段实现各种控制功能。它具有通用性强、可靠性高、能适应恶劣的工业环境、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场连接安装方便等一系列优点,正逐步取代传统的继电器控制系统,广泛应用于各个行业的控制中。