导航:首页 > 操作系统 > 单片机c语言延时

单片机c语言延时

发布时间:2022-09-14 23:55:32

单片机C语言延时需要注意的问题

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。
在keil C51中,直接调用库函数:
#include // 声明了void _nop_(void);
_nop_(); // 产生一条NOP指令

作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。

在选择C51中循环语句时,要注意以下几个问题
第一、定义的C51中循环变量,尽量采用无符号字符型变量。
第二、在FOR循环语句中,尽量采用变量减减来做循环。
第三、在do…while,while语句中,循环体内变量也采用减减方法。
这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。
下面举例说明:
unsigned char i;
for(i=0;i<255;i++);
unsigned char i;
for(i=255;i>0;i--);

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:
MOV09H,#0FFH
LOOP: DJNZ09H,LOOP
指令相当简洁,也很好计算精确的延时时间。
同样对do…while,while循环语句中,也是如此
例:
unsigned char n;
n=255;
do{n--}
while(n);

n=255;
while(n)
{n--};

这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,
故其精确时间的计算也很方便。
其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
unsigned char i,j
for(i=255;i>0;i--)
for(j=255;j>0;j--);

unsigned char i,j
i=255;
do{j=255;
do{j--}
while(j);
i--;
}
while(i);

unsigned char i,j
i=255;
while(i)
{j=255;
while(j)
{j--};
i--;
}
这三种方法都是用DJNZ指令嵌套实现循环的,由C51编译器用下面的指令组合来完成的
MOVR7,#0FFH
LOOP2: MOVR6,#0FFH
LOOP1: DJNZR6,LOOP1
DJNZR7,LOOP2
这些指令的组合在汇编语言中采用DJNZ指令来做延时用,因此它的时间精确计算也是很简单,假上面变量i的初值为m,变量j的初值为n,则总延时时 间为:m×(n×T+T),其中T为DJNZ指令执行时间(DJNZ指令为双周期指令)。这里的+T为MOV这条指令所使用的时间。同样对于更长时间的延 时,可以采用多重循环来完成。
只要在程序设计循环语句时注意以上几个问题。
下面给出有关在C51中延时子程序设计时要注意的问题
1、在C51中进行精确的延时子程序设计时,尽量不要或少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。
2、在延时子程序设计时,采用do…while,结构做循环体要比for结构做循环体好。
3、在延时子程序设计时,要进行循环体嵌套时,采用先内循环,再减减比先减减,再内循环要好。
unsigned char delay(unsigned char i,unsigned char j,unsigned char k)
{unsigned char b,c;
b="j";
c="k";
do{
do{
do{k--};
while(k);
k="c";
j--;};
while(j);
j=b;
i--;};
while(i);
}

这精确延时子程序就被C51编译为有下面的指令组合完成
delay延时子程序如下:
MOV R6,05H
MOV R4,03H
C0012: DJNZ R3, C0012
MOV R3,04H
DJNZ R5, C0012
MOV R5,06H
DJNZ R7, C0012
RET
假设参数变量i的初值为m,参数变量j的初值为n,参数变量k的初值为l,则总延时时间为:l×(n×(m×T+2T)+2T)+3T,其中T为 DJNZ和MOV指令执行的时间。当m=n=l时,精确延时为9T,最短;当m=n=l=256时,精确延时到16908803T,最长。

❷ 单片机C语言编程问题:延时函数运行中能否响应中断

摘要 所谓中断,就是可以打断正常运行的程序,这个程序也可以是正在运行的延时程序,除非程序中主动禁止

❸ 单片机延时1秒如何计算要最详细一点的要过程用C语言

unsigned char rSecondCount; //秒计时数
unsigned char rMinuteCount; //分计时数
sbit IsOneSecondReach;
sbit Pulse_Sec=P1^0;
sbit Pulse_Min=P1^1;
main()
{
rSecondCount=0;
rMinuteCount=0;
TH1=0x3C;
TL1=0xAF; //定时器50ms产生一次中断 (FFFF-3CAF)us
MOD = 0x10; //定时器1工作于模式1,(用工作于模式2也可以,而且更 简便)
TR1=1; //使能定时器1
ET1=1; //开中断
EA=1; //开全局中断
while(1)
{
if (IsOneSecondReach)
{
IsOneSecondReach = 0;
//do something,如果一秒延时标志为1,则清除此标志,等待下次1秒,在此处
//执行需要执行的程序
}
}
}
/* 定时器50ms产生一次中断 */
void Timer(void) interrupt 3
{
/* 重新载入T1参数 */
TH1=0x3C;
TL1=0xAF;
/* 一秒累加 */
rSecondCount++;//秒计时+1
if (rSecondCount==20) //1sec到,50ms*20
{
IsOneSecondReach = 1;
}
}
//
脉冲宽度为50ms,如果有其他要求的话,修改T1参数和“秒分”的参数凑下就行了.

❹ 51单片机C语言程序中延时函数delay的原理是什么

原理:只是执行一些所谓的“无实际意义的指令”,如缩放或执行一个int自加,简单地说,就像高中数学中的“乘法原理”一样,很容易迅速增加上面提到的“无意义指令”的数量

关于大小的值:如果是在C语言中,该值不仅与水晶振动、单片机本身的速度,但也与C的编译器,所以,虽然这个值可以精确计算,但大多数情况下,程序员是经验值。

当然,如果你在汇编中编程,情况就不同了,因为每条指令使用一定数量的机器周期,你当然可以根据所有指令使用的总时间来计算特定延迟的总时间。

(4)单片机c语言延时扩展阅读:

定义延迟XMS毫秒的延迟函数

Voiddelay(unsignedintXMS)//XMS表示需要延迟的毫秒数

无符号intx,y;

For(x=XMS;X0;X-)

For(y=110;Y”0;Y-);

使用:

VoidDelay10us(ucharMs)

Uchar数据我;

(;女士“0;------Ms)

对于(I = 26)我> 0;我-);

I=[(延迟值-1.75)*12/ms-15]/4

❺ 怎么用C语言做单片机的精确延时

在单片机应用中,经常会遇到需要短时间延时的情况,一般都是几十到几百μs,并且需要很高的精度(比如用单片机驱动DS18B20时,误差容许的范围在十几μs以内,不然很容易出错);而某些情况下延时时间较长,用计时器往往有点小题大做。另外在特殊情况下,计时器甚至已经全部用于其他方面的定时处理,此时就只能使用软件定时了[1]。
1 C语言程序延时
Keil C51的编程语言常用的有2种: 一种是汇编语言;另一种是C 语言。用汇编语言写单片机程序时,精确时间延时是相对容易解决的。比如,用的是晶振频率为12 MHz的AT89C51,打算延时20 μs,51单片机的指令周期是晶振频率的1/12,即一个机器周期为1 μs;“MOV R0,#X”需要2个机器周期,DJNZ也需要2个机器周期,单循环延时时间t=2X+3(X为装入寄存器R0的时间常数)[2]。这样,存入R0里的数初始化为8即可,其精度可以达到1 μs。用这种方法,可以非常方便地实现512 μs以下时间的延时。如果需要更长时间,可以使用两层或更多层的嵌套,当然其精度误差会随着嵌套层的增加而成倍增加。
虽然汇编语言的机器代码生成效率很高,但可读性却并不强,复杂一点的程序就更难读懂;而C语言在大多数情况下,其机器代码生成效率和汇编语言相当,但可读性和可移植性却远远超过汇编语言,且C 语言还可以嵌入汇编程序来解决高时效性的代码编写问题。就开发周期而言,中大型软件的编写使用C 语言的开发周期通常要比汇编语言短很多,因此研究C语言程序的精确延时性能具有重要的意义。
C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
2 单层循环延时精度分析
下面是进行μs级延时的while程序代码。
延时函数:
void delay1(unsigned char i) {
while(i );}
主函数:
void main() {
while(1) {
delay1(i);
}
}
使用Keil C51的反汇编功能,延时函数的汇编代码如下:
C:0x00E6AE07MOVR6,0x07
C:0x00E81FDECR7
C:0x00E9EEMOVA,R6
C:0x00EA70FAJNZC:00E6
C:0x00EC22RET

图1 断点设置位置图
通过对i赋值为10,在主程序中图1所示的位置设置断点。经过测试,第1次执行到断点处的时间为457 μs,再次执行到该处的时间为531 μs,第3次执行到断点处的时间为605 μs,10次while循环的时间为74 μs,整个测试结果如图2所示。

图2 使用i--方式测试仿真结果图
通过对汇编代码分析,时间延迟t=7X+4(其中X为i的取值)。测试表明,for循环方式虽然生成的代码与用while语句不大一样,但是这两种方法的效率几乎相同。C语言中的自减方式有两种,前面都使用的是i--的方式,能不能使用--i方式来获得不同的效果呢?将前面的主函数保持不变,delay1函数修改为下面的方式:
void delay1(unsigned char i) {
while(--i);}
同样进行反汇编,得到如下结果:
C:0x00E3DFFEDJNZR7,
C:00E3C:0x00E522RET
比较发现,--i的汇编代码效率明显高于i--方式。由于只有1条语句DJNZ,执行只需要2个时钟周期, 1个时钟周期按1 μs计算,其延时精度为2 μs;另外,RET需要2个时钟周期,能够达到汇编语言代码的效率。按前面的测试条件进行测试,第1次执行到断点处的时间为437 μs,再次执行到该处的时间为465 μs,第3次执行到断点处的时间为493 μs,10次while循环的时间为28 μs,整个测试结果如图3所示。

图3 使用--i方式测试仿真结果图
调整i的取值,i取8时延时时间为24 μs,i取9时延时时间为26 μs。通过分析得出,10次循环为28 μs是由于外层循环造成的,其精度可以达到2 μs。在设计时应该考虑参数传递和RET语句执行所需要的时间周期。实验分析发现,for语句使用--i方式,同样能够达到与汇编代码相同的精度。i取不同值时延时仿真结果如图4所示。

图4 i取不同值时延时仿真结果图
3 多重嵌套下的C程序延时
在某些情况下,延时较长,仅使用单层循环方式是不能完成的。此时,只能使用多层循环方式,那么多重循环条件下,C程序的精度如何呢?下面是一个使用for语句实现1 s延时的函数。
延时函数
void delay1s(void) {
for(k=100;k>0;k--) //定时1 s
for(i=20;i>0;i--)
for(j=248;j>0;j--);
}
主函数调用延时函数代码段:
while(1) {
delay1s();
scond+=1;
}
为了直接衡量这段代码的效果,利用Keil C找出这段代码产生的汇编代码:
C:0x00B37002JNZ
C:00B7C:0x00B5150CDEC0x0C
C:0x00B7E50DMOVA,0x0D
C:0x00B9450CORLA,0x0C
C:0x00BB70DEJNZC:009B
C:0x00BDE50BMOVA,0x0B
C:0x00BF150BDEC0x0B
C:0x00C17002JNZC:00C5
C:0x00C3150ADEC0x0A
C:0x00C5E50BMOVA,0x0B
C:0x00C7450AORLA,0x0A
C:0x00C970CAJNZC:0095
C:0x00CB22RET
分析汇编代码,其他汇编代码使用的不是DJNZ跳转方式,而是DEC和JNZ语句来实现循环判断。1条JNZ指令要花费2个时钟周期,3条指令就需要6个机器周期,MOV指令和DEC指令各需要1小时钟周期,1个时钟周期按1 μs算,其精度最多达到8 μs,最后加上一条LCALL和一条RET语句,所以整个延时精度较差[4]。
利用Keil C的测试工具,在一处设置一个断点。第1次执行到中断处的时间为0.000 513 s,第2次执行到中断处的时间为1.000 922 s,时间延迟为1.000 409 s,测试结果如图5所示。对于上面的3种循环嵌套,循环次数为100×20×248=496 000,每次循环的时间约为2 μs。

图5 三重嵌套循环1 s实现时间测试结果
为获取与汇编语言延时的差距,同样进行1 s的延时,程序代码段如下:
LCALL DELY1S
INC Second
DELY1S:MOV R5,#100
D2:MOV R6,#20
D1:MOV R7,#248
DJNZ R7,$
DJNZ R6,D1
DJNZ R5,D2
RET
通过Keil C51测试,其实际延迟时间为0.997 943 s。虽然C语言实现延时方式的汇编代码复杂度增加,但是与汇编语言实现的方式性能差距并不大。
4 总结
汇编语言在实时性方面具有较大的优越性,虽然使用Keil C51可以在C语言程序中嵌入汇编代码,但是复杂度明显提高。实验证明,只要合理地运用C语言,在延时编程方面就可以达到与汇编语言相近的精度。为了获得精确的时间延迟,可通过Keil C工具的仿真功能,调整延迟量,从而得到较理想的结果。

❻ 单片机c语言带参数延时怎么写

在循环里判断是否满足跳出的条件,满足则跳出循环,不满足就继续延时直到延时结束。
具体的条件要有程序的要求来,比如说某个io口的电平的状态。
sbit
state=p1^7;
delay(uint)
{
uint
x,y;
for(x=1000;x>0;x--)
for(y=1200;y>0;y--)
{
if(state==1)
return
;//当p1.7口为高时跳出循环
}
}
//由于加入了一条语句,延时要重新计算

❼ 单片机c语言的延时程序500ms

一般单片机在c语言中很难得到精确的延时,所以一般对时间要求高的都用计时器中断来做了。如果时间要求不严格可以用for循环来做,你可以实际测试一下,把时间延时到大概一秒左右,然后烧进单片机里运行,比如一个灯亮灯灭的程序,看着灯计数,同时用秒表计时,几个几十次后取平均值就能知道大概时间了。

❽ 51单片机用c语言怎么写延时函数

延时时间的计算与单片机的晶振频率有关。若晶振频率为12Mhz,那么单片机每震动一次所需要的时间是1/12M s。那么再来看看单片机执行一次自减所需要的振动次数是96次,假如我们对时间要求不是特别精确的话,可以约等于100来计算。现在通过上面两个数据可以得出:单片机每执行一次自减所需要的时间是1/12M *100(s),即1/120000 s,逆向计算一下,每1ms需要自减多少次?120次对吧。所以一个简单的延时功能就诞生了,我们只需要自减120次,就可以延时1ms,如果我们要延时50ms呢,那就自减50*120=6000次。那么在程序上如何表达呢?我们可以用两套for循环
void delay(int i){
int x,y;
for(x=i;x>0;x--){
for(y=120;y>0;y--)
}
}
参数 i 代表该函数延时多少ms

阅读全文

与单片机c语言延时相关的资料

热点内容
安卓手机连车载的叫什么 浏览:223
怎么让自己的手机键盘变得好看app 浏览:53
能看qq的文件夹 浏览:515
android二维码生成代码 浏览:567
焦炉气压缩机 浏览:400
imap接收邮件服务器地址 浏览:291
小乔肖恩解压密码 浏览:645
php网页网盘源码 浏览:181
签到任务源码 浏览:814
母亲节的文案怎么写app 浏览:984
加密协议aes找不到 浏览:250
java服务器端开发源码 浏览:551
编译器编译运行快捷键 浏览:333
住房app怎么快速选房 浏览:174
怎么在电脑上编译成功 浏览:214
单片机可调时钟设计方案 浏览:192
qq文件夹密码忘记怎么找回 浏览:683
php扩展插件 浏览:608
解压视频厕所抽纸 浏览:952
app减脂怎么用 浏览:452