⑴ 51单片机,要求是让流水灯正常运行,要求是数码管显示学号流水灯运行,然后打开开关数码管开始计数
#include "AT89X52.h"
#include "intrins.h"
#define LEG_LINE P2
#define LEG_DUAN P0sbit Button = P3^7;
unsigned long dispalyCount;
unsigned int mCount;unsigned char table[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};
void display(unsigned long displaydata)
{
LEG_LINE = 0x01;
LEG_DUAN = table[displaydata / 10000000];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x02;
LEG_DUAN = table[displaydata % 10000000 / 1000000];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x04;
LEG_DUAN = table[displaydata % 10000000 % 1000000 / 100000];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x08;
LEG_DUAN = table[displaydata % 10000000 % 1000000 % 100000 / 10000];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x10;
LEG_DUAN = table[displaydata % 10000000 % 1000000 % 100000 % 10000 / 1000];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x20;
LEG_DUAN = table[displaydata % 10000000 % 1000000 % 100000 % 10000 % 1000 / 100];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x40;
LEG_DUAN = table[displaydata % 10000000 % 1000000 % 100000 % 10000 % 1000 % 100 / 10 ];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
LEG_LINE = 0x80;
LEG_DUAN = table[displaydata %10 ];
mCount = 100;
while(mCount--);
LEG_DUAN = 0xff;
LEG_LINE = 0x00;
}unsigned long displaydata = 11;
void Timer1init(void)
{
TMOD = 0X20;
TL1 = 0x00;//??????
TH1 = 0x4C;//??????
ET1 = 1;
TR1 = 1;//???1????
EA = 1;
}unsigned char KeyStatus;
void main(void)
{
Timer1init();
while(1)
{
if (Button == 0)
{
mCount = 100;
while(mCount--);
if (Button == 0)
{
KeyStatus = ~KeyStatus;
while(!Button);
}
}
if (!KeyStatus)
{
display(displaydata);
dispalyCount = 0;
}
else
{
display(dispalyCount);
}
}
}unsigned int count1,count2;
unsigned char Temp = 0xfe;
void Time1() interrupt 3
{
TL1 = 0x00;//??????
TH1 = 0x4C;//??????
if (count1++ == 1000)
{
count1 = 0;
Temp = _cror_(Temp,1);
P1 = Temp;
}
if (count2++ == 10)
{
count2 = 0;
if(dispalyCount++ >= 88888888)
{
dispalyCount = 0;
}
}
}
⑵ 如何用单片机实现流水灯,从一依次亮到八,再从八依次亮回一,一直循环
用GPIO寄存器比如PA、PB、PC这类的整段寄存器。配合循环、移位和延时(软硬都可以)操作,就能很优雅地实现。
单片机(Single-Chip Microcomputer)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。
⑶ 51单片机C语言对流水灯编程,用定时中断做
#include<reg52.h>
#defineucharunsignedchar
ucharm=0,i=0;
voidmain()
{
TMOD|=0x01;//定时器0工作方式为1
TH0=(65536-50000)/256;//装初值
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器中断
TR0=1;//开启定时器
while(1);//等待中断
}
voidtimer0()interrupt1
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
m++;
if(m==5)//12M晶振定时5*50MS=250MS
{
m=0;
P1=~(0X01<<i);//P1接8个LED
if(++i==8)
i=0;
}
}
[补充]
延时函数是一种粗略计算延时时间的函数
是通过让单片机执行空指令,达到等待延时的目的。
经常被应用在对延时时间要求不太严格的场合。
而定时器中断,则是通过对晶振时钟进行计数
由于晶振的频率一般是很稳定的,所以晶振的脉冲频率基本稳定
从而通过对脉冲进行计数即可得到准确的延时目的。
中断延时函数和定时器中断延时没有明确的对应关系。
主要是根据你的应用场合来确定使用哪种函数。
⑷ :定时器实现流水灯(八个灯)(单片机C语言的程序)
把定时器设置成50ms一次定时中断,作为时间基准,在定时中断里再每次对一个变量计数加加得到想要的0.5秒和2秒时间基准
⑸ 52单片机,C语言, 题目:流水灯,数码管,中断定时/计数器
出题目?很多经典的题目可以出的。
1、按下开始按键后,数码管开始秒计时(00~99),流水灯表演顺流、逆流、全闪、双灯咬尾互追等花样,每个花样表演30s。要求中断定时,计时误差每60s不得超过0.1s。
2、按下开始按键后,数码管首先自检(依次段检,间隔0.25s),而后显示从0到9的数字(间隔0.5s)。要求中断定时,计时误差每60s不得超过0.1s。
⑹ 单片机如何控制流水灯每三秒循环一次
for循环三次后,执行while(1); ,这是一条死循环语句,相当于暂停指令,停止在此处。因单片机没有暂停指令,只好用这行语句代替了。
如果3次后,需要保持亮或灭,可以换一下:
led=1;
led=0;这两行就行了。
在实现流水灯之前,我们有必要提一点,C51代码在写之前,要参考电路图来写。拿流水灯来说,我们来看图二,LED灯,也就是二极管,八只LED的正极通过一根总线接在+5V的电压上,再看图一,可知八只LED灯的负极接在LED、P2的8个I/O口上。根据二极管的导通条件可知,在单片机的IO口输出低电平时,才能点亮LED灯。
⑺ 单片机汇编语言流水灯,定时器中断控制,(500ms)延时
单片机汇编语言流水灯,用定时器中断控制,可以初始化设置定时器时间(如50mS注定时器最大定时时间到不了500mS,需要加计数存储,中断10就是500mS),有多种方式实现如作一个流水状态表,定时读取写入IO端口 表加一,,或者用左移太移等方式都可以实现在,网上有很多这种实例。
⑻ 单片机流水灯C语言程序(8个灯,依次点亮每个灯,延时500MS)
单片机流水灯C语言程序的源代码如下:
#include //51系列单片机定义文件
#define uchar unsigned char //定义无符号字符
#define uint unsigned int //定义无符号整数
void delay(uint); //声明延时函数
void main(void)
{
uint i;
uchar temp;
while(1)
{
temp=0x01;
for(i=0;i<8;i++) //8个流水灯逐个闪动
{
P1=~temp;
delay(100); //调用延时函数
temp<<=1;
}
temp=0x80;
for(i=0;i<8;i++) //8个流水灯反向逐个闪动
{
P1=~temp;
delay(100); //调用延时函数
temp>>=1;
}
temp=0xFE;
for(i=0;i<8;i++) //8个流水灯依次全部点亮
{
P1=temp;
delay(100); //调用延时函数
temp<<=1;
}
temp=0x7F;
for(i=0;i<8;i++) //8个流水灯依次反向全部点亮
{
P1=temp;
delay(100); //调用延时函数
temp>>=1;
}
void delay(uint t) //定义延时函数
{
register uint bt;
for(;t;t--)
for(bt=0;bt<255;bt++);
}
(8)单片机定时流水灯计数扩展阅读
51单片机流水灯的源代码如下
#include<reg51.h>
#include<intrins.h>
voiddelay(inta)
{
inti;
while(a--)for(i=0;i<110;i++);
}
main()
{
inti;
while(1)
{
P0=0xfe;
for(i=0;i<8;i++)
{
P0=_crol_(P0,1);
delay(500);
}
}
}
⑼ 有关于单片机的一段程序,是用定时器做流水灯的
你这个根本
就没有用到定时器函数。。你要想不精确延时的话
搞个比较大的数
++
或--
来延时
要用定时器
就得用定时器中断。。
至于全亮的原因
是因为
delay1s
没有起到延时1s的作用
二十极其短的延时
导致流水灯太快
给人感觉是全亮的。。
你可以改成
long
a
;
while(a<500000)
(值大小自己调试)
⑽ 急求单片机流水灯程序及详解
你好! 给你两个份实例 基本可以搞定啦 !
一。。。。流水灯实例
1. 基础知识:寻址方式是寻找、确定参与操作的数据的地址的方式。8051单片机的寻址方式包括寄存器寻址、直接寻址、寄存器间接寻址、立即寻址、变址寻址和位寻址7种寻址方式。
2. 硬件电路(等级不够还不能传图片哈)
3. 软件程序设计:
ORG 0000H ;伪指令,指定程序从0000H开始存放
LJMP MAIN; 跳转指令,程序跳转到MAIN处
ORG 0100H ;伪指令,指定以下程序从0100H开始存放
MAIN:
MOV SP,#60H ;给堆栈指针赋初值
MOV P1,#0FFH ;给P1赋初值,LED全灭
;以下为查表程序
MOV DPTR,#LED_TABLE
LIGHT:
MOV R7,#42
LOOP:
MOV A,#42
SUBB A,R7
MOVC A,@A+DPTR
MOV P1,A ;输出显示
LCALL DELAY ;调延时子程序
DJNZ R7,LOOP
SJMP LIGHT ;跳转,程序继续
DELAY:
MOV R7,#10H
DELAY0:
MOV R6,#7FH
DELAY1:
MOV R5,#7FH
DJNZ R5,$
DJNZ R6,DELAY1
DJNZ R7,DELAY0
RET
;表格数据
LED_TABLE:
DB 0FFH ;全部熄灭
DB 0FEH. , 0FDH , 0FBH , 0F7H , 0EFH , 0DFH , 0BFH, 07FH ;依次逐个点亮
DB 0FEH. , 0FCH , 0F8H , 0F0H , 0E0H , 0C0H , 080H, 000H ; 依次逐个叠加
DB 080H. , 0C0H , 0E0H , 0F0H , 0F8H , 0FCH , 0FEH, 0FFH ;依次逐个递减
DB 07EH. , 0BDH , 0DBH , 0E7H , 0E7H , 0DBH , 0BDH, 07EH ;两边靠拢后分开
DB 07EH. , 03CH , 01BH , 000H , 000H , 018H , 03CH, 07EH ;从两边叠加后递减
DB 000H ;全部点亮
END
4. 运行结果
程序运行后,将依次循环出现8只LED依次逐个点亮 、依次逐个叠加、依次逐个递减、从两边靠拢后分开、从两边叠加后递减的流水灯效果。
5. 技巧总结
查表指令可用于复杂代码转换显示,通过查表指令可以实现复杂的显示效果,并可以减少程序代码。
二 。。。。用单片机控制的LED流水灯设计(电路、程序全部给出)
1.引言
当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。学习单片机的最有效方法就是理论与实践并重,本文笔者用AT89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法,以期给单片机初学者以启发,更快地成为单片机领域的优秀人才。
2.硬件组成
按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS
8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz工作频率,使用AT89C51单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。其具体硬件组成如图1所示。
图1 流水灯硬件原理图
从原理图中可以看出,如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,
如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED的点亮和熄灭的方法同LED1。因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的做流水灯了。在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。
3.软件编程
单片机的应用系统由硬件和软件组成,上述硬件原理图搭建完成上电之后,我们还不能看到流水灯循环点亮的现象,我们还需要告诉单片机怎么来进行工作,即编写程序控制单片机管脚电平的高低变化,来实现发光二极管的一亮一灭。软件编程是单片机应用系统中的一个重要的组成部分,是单片机学习的重点和难点。下面我们以最简单的流水灯控制功能即实现8个LED灯的循环点亮,来介绍实现流水灯控制的几种软件编程方法。
3.1位控法
这是一种比较笨但又最易理解的方法,采用顺序程序结构,用位指令控制P1口的每一个位输出高低电平,从而来控制相应LED灯的亮灭。程序如下:
ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
CLR P1.0 ;P1.0输出低电平,使LED1点亮
ACALL DELAY ;调用延时子程序
SETB P1.0 ;P1.0输出高电平,使LED1熄灭
CLR P1.1 ;P1.1输出低电平,使LED2点亮
ACALL DELAY ;调用延时子程序
SETB P1.1 ;P1.1输出高电平,使LED2熄灭
CLR P1.2 ;P1.2输出低电平,使LED3点亮
ACALL DELAY ;调用延时子程序
SETB P1.2 ;P1.2输出高电平,使LED3熄灭
CLR P1.3 ;P1.3输出低电平,使LED4点亮
ACALL DELAY ;调用延时子程序
SETB P1.3 ;P1.3输出高电平,使LED4熄灭
CLR P1.4 ;P1.4输出低电平,使LED5点亮
ACALL DELAY ;调用延时子程序
SETB P1.4 ;P1.4输出高电平,使LED5熄灭
CLR P1.5 ;P1.5输出低电平,使LED6点亮
ACALL DELAY ;调用延时子程序
SETB P1.5 ;P1.5输出高电平,使LED6熄灭
CLR P1.6 ;P1.6输出低电平,使LED7点亮
ACALL DELAY ;调用延时子程序
SETB P1.6 ;P1.6输出高电平,使LED7熄灭
CLR P1.7 ;P1.7输出低电平,使LED8点亮
ACALL DELAY ;调用延时子程序
SETB P1.7 ;P1.7输出高电平,使LED8熄灭
ACALL DELAY ;调用延时子程序
AJMP START ;8个LED流了一遍后返回到标号START处再循环
DELAY: ;延时子程序
MOV R0,#255 ;延时一段时间
D1: MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET ;子程序返回
END ;程序结束
3.2循环移位法
在上个程序中我们是逐个控制P1端口的每个位来实现的,因此程序显得有点复杂,下面我们利用循环移位指令,采用循环程序结构进行编程。我们在程序一开始就给P1口送一个数,这个数本身就让P1.0先低,其他位为高,然后延时一段时间,再让这个数据向高位移动,然后再输出至P1口,这样就实现“流水”效果啦。由于8051系列单片机的指令中只有对累加器ACC中数据左移或右移的指令,因此实际编程中我们应把需移动的数据先放到ACC中,让其移动,然后将ACC移动后的数据再转送到P1口,这样同样可以实现“流水”效果。具体编程如下所示,程序结构确实简单了很多。
ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
MOV A,#0FEH ;ACC中先装入LED1亮的数据(二进制的11111110)
MOV P1,A ;将ACC的数据送P1口
MOV R0,#7 ;将数据再移动7次就完成一个8位流水过程
LOOP: RL A ;将ACC中的数据左移一位
MOV P1,A ;把ACC移动过的数据送p1口显示
ACALL DELAY ;调用延时子程序
DJNZ R0,LOOP ;没有移动够7次继续移动
AJMP START ;移动完7次后跳到开始重来,以达到循环流动效果
DELAY: ;延时子程序
MOV R0,#255 ;延时一段时间
D1: MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET ;子程序返回
END ;程序结束
3.3查表法
上面的两个程序都是比较简单的流水灯程序,“流水”花样只能实现单一的“从左到右”流方式。运用查表法所编写的流水灯程序,能够实现任意方式流水,而且流水花样无限,只要更改流水花样数据表的流水数据就可以随意添加或改变流水花样,真正实现随心所欲的流水灯效果。我们首先把要显示流水花样的数据建在一个以TAB为标号的数据表中,然后通过查表指令“MOVC A,@A+DPTR”把数据取到累加器A中,然后再送到P1口进行显示。具体源程序如下,TAB标号处的数据表可以根据实现效果的要求任意修改。
ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
MOV DPTR,# TAB ;流水花样表首地址送DPTR
LOOP: CLR A ;累加器清零
MOVC A,@A+DPTR ;取数据表中的值
CJNE A,#0FFH,SHOW;检查流水结束标志
AJMP START ;所有花样流完,则从头开始重复流
SHOW: MOV P1,A ;将数据送到P1口
ACALL DELAY ;调用延时子程序
INC DPTR ;取数据表指针指向下一数据
AJMP LOOP ;继续查表取数据
DELAY: ;延时子程序
MOV R0,#255 ;延时一段时间
D1: MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET ;子程序返回
TAB: ;下面是流水花样数据表,用户可据要求任意编写
DB 11111110B ;二进制表示的流水花样数据,从低到高左移
DB 11111101B
DB 11111011B
DB 11110111B
DB 11101111B
DB 11011111B
DB 10111111B
DB 01111111B
DB 01111111B ;二进制表示的流水花样数据,从高到低右移
DB 10111111B
DB 11011111B
DB 11101111B
DB 11110111B
DB 11111011B
DB 11111101B
DB 11111110B
DB 0FEH,0FDH,0FBH,0F7H ;十六进制表示的流水花样数据
DB 0EFH,0DFH,0BFH,7FH
DB 7FH,0BFH,0DFH,0EFH
DB 0F7H,0FBH,0FDH,0FEH
……
DB 0FFH ;流水花样结束标志0FFH
END ;程序结束
4.结语
当上述程序之一编写好以后,我们需要使用编译软件对其编译,得到单片机所能识别的二进制代码,然后再用编程器将二进制代码烧写到AT89C51单片机中,最后连接好电路通电,我们就看到LED1~LED8的“流水”效果了。本文所给程序实现的功能比较简单,旨在抛砖引玉,用户可以自己在此基础上扩展更复杂的流水灯控制,比如键盘控制流水花样、控制流水灯显示数字或图案等等。
希望能帮上你