❶ linux两个进程间共享内存通信都需要调用shmget函数么
两个进程都需要调用shmget函数,是根据key值来实现访问同一个共享内存的。
函数原型:int shmget(key_t key, size_t size, int shmflg)
由于是两个进程访问,最好是做两手准备:
1,先创建,若创建成功,可以直接使用。
2,若创建失败--此时,很可能另一个进程已经创建成功了,就不能再创建了。此时,就改为只是获取。
示例代码如下:
int mid = shmget(key, size, IPC_CREAT | 0660);
if(mid < 0){
mid = shmget(key, 0, 0);
}
❷ LINUX下系统编程,多进程间数据共享,即共享变量
共享内存相关的API怎么使用不难:
1. 首先调用shmget分配一个新的共享内存,这里你可以指定其大小,如果你要分配一个整形,那你可以将size参数设置成4,如果你要共享一个结构体那就将size参数设置成你的结构体大小,操作系统不关心你要共享什么,它只关心你要分配多少个字节的区间。而且实际上操作系统会将你要求的大小按照内存页面的大小进行对齐,也就是说它可能实际上给你分配若干个页面的物理存储空间,只要这个空间能够容纳你所指定的大小就ok了。它的第三个参数是关于一些访问权限设置的,要讲起来太长,建议自己搜索一下,或者用man查查帮助。总之,调用完shmget以后系统会给你创建一段共享内存,然后返回给你一个shmid,也就是这个共享内存的标识,你可以理解为给它取了个名字。
2. 接着调用shmat将这段共享内存映射到你的进程的虚拟地址空间上。这个函数的第一个参数就是你之前调用shmget创建的共享内存的名字shmid;第二个参数是个指针,指向你的进程虚存空间中的某个地址,你可以通过传入一个确定的地址强行要求操作系统将共享内存映射到你指定的虚存地址上(可能会失败,如果你指定的虚拟地址空间已经映射了别的物理存储空间),也可以通过传入0地址让系统给你选择一个合适的地址(它会通过返回值把地址返回给你)。第三个参数则允许你指定一些特殊的标志位,还是那句话,太复杂自己搜索一下看看,一般应用不需要用到。
至于例子嘛你可以看看下面这个链接:
http://ke..com/view/3025906.htm
另外,你要知道只用共享内存是不互斥的,你必须结合信号量一起使用才能防止互斥问题的出现。如果你共享的只是一个整形变量可能问题不大,因为对页面对齐的整形变量的读写都是原子操作,但如果你共享的是个复杂的结构体就得小心了。
❸ linux 进程间通信的几种方式
1管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
2信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
3报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
4共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
5信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
6套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。
❹ linux共享内存和mmap的区别
共享内存的创建
根据理论:
1. 共享内存允许两个或多个进程共享一给定的存储区,因为数据不需要来回复制,所以是最快的一种进程间通信机制。共享内存可以通过mmap()映射普通文件(特殊情况下还可以采用匿名映射)机制实现,也可以通过系统V共享内存机制实现。应用接口和原理很简单,内部机制复杂。为了实现更安全通信,往往还与信号灯等同步机制共同使用。
mmap的机制如:就是在磁盘上建立一个文件,每个进程存储器里面,单独开辟一个空间来进行映射。如果多进程的话,那么不会对实际的物理存储器(主存)消耗太大。
shm的机制:每个进程的共享内存都直接映射到实际物理存储器里面。
结论:
1、mmap保存到实际硬盘,实际存储并没有反映到主存上。优点:储存量可以很大(多于主存)(这里一个问题,需要高手解答,会不会太多拷贝到主存里面???);缺点:进程间读取和写入速度要比主存的要慢。
2、shm保存到物理存储器(主存),实际的储存量直接反映到主存上。优点,进程间访问速度(读写)比磁盘要快;缺点,储存量不能非常大(多于主存)
使用上看:如果分配的存储量不大,那么使用shm;如果存储量大,那么使用shm。
参看网络:http://ke..com/view/1499209.htm
mmap就是一个文件操作
看这些网络的描述:
mmap()系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以向访问普通内存一样对文件进行访问,不必再调用read(),write()等操作。 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void *)-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错EAGAIN:文件已被锁定,或者太多的内存已被锁定EBADF:fd不是有效的文件描述词EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制ENODEV:指定文件所在的文件系统不支持内存映射ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区参数fd为即将映射到进程空间的文件描述字,
一般由open()返回,同时,fd可以指定为-1,此时须指定 flags参数中的MAP_ANON,表明进行的是匿名映射(不涉及具体的文件名,避免了文件的创建及打开,很显然只能用于具有亲缘关系的进程间通信)
相关文章参考:
mmap函数是unix/linux下的系统调用,来看《Unix Netword programming》卷二12.2节有详细介绍。
mmap系统调用并不是完全为了用于共享内存而设计的。它本身提供了不同于一般对普通文件的访问方式,进程可以像读写内存一样对普通文件的操作。而Posix或系统V的共享内存IPC则纯粹用于共享目的,当然mmap()实现共享内存也是其主要应用之一。
mmap系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以像访问普通内存一样对文件进行访问,不必再 调用read(),write()等操作。mmap并不分配空间, 只是将文件映射到调用进程的地址空间里, 然后你就可以用memcpy等操作写文件, 而不用write()了.写完后用msync()同步一下, 你所写的内容就保存到文件里了. 不过这种方式没办法增加文件的长度, 因为要映射的长度在调用mmap()的时候就决定了.
简单说就是把一个文件的内容在内存里面做一个映像,内存比磁盘快些。
基本上它是把一个档案对应到你的virtual memory 中的一段,并传回一个指针。
重写总结:
1、mmap实际就是操作“文件”。
2、映射文件,除了主存的考虑外。shm的内存共享,效率应该比mmap效率要高(mmap通过io和文件操作,或“需要写完后用msync()同步一下”);当然mmap映射操作文件,比直接操作文件要快些;由于多了一步msync应该可以说比shm要慢了吧???
3、另一方面,mmap的优点是,操作比shm简单(没有调用比shm函数复杂),我想这也是许多人喜欢用的原因,包括nginx。
缺点,还得通过实际程序测试,确定!!!
修正理解(这也真是的,这个网站没办法附加;只能重写了):
今天又细心研究了一下,发现网络这么一段说明:
2、系统调用mmap()用于共享内存的两种方式:
(1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下:
fd=open(name, flag, mode);
if(fd<0)
...
ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方,我们将在范例中进行具体说明。
(2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。
看了一下windows“内存映射文件”:http://ke..com/view/394293.htm
内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。
这里再总结一次:
1、mmap有两种方式,一种是映射内存,它把普通文件映射为实际物理内存页,访问它就和访问物理内存一样(这也就和shm的功能一样了)(同时不用刷新到文件)
2、mmap可以映射文件,不确定会不会像windows“内存映射文件”一样的功能,如果是,那么他就能映射好几G甚至好几百G的内存数据,对大数据处理将提供强大功能了???
3、shm只做内存映射,和mmap第一个功能一样!只不过不是普通文件而已,但都是物理内存。
❺ linux共享内存存在于进程空间的什么位置
共享内存方式:从物理内存里面拿出来一部分作为多个进程共享。 共享内存是进程间共享数据的一种最快的方法,一个进程向共享内存区域写入数据,共享这个内存的所有进程都可以立即看到其中内容。 共享内存实现步骤: 一、创建共享内存,使用shmget函数。 二、映射共享内存,将这段创建的共享内存映射到具体的进程空间去,使用shmat函数。 创建共享内存shmget: intshmget(key_t key, size_t size, int shmflg) 功能:得到一个共享内存标识符或创建一个共享内存对象并返回共享内存标识符。 key: 0(IPC_PRIVATE)会建立共享内存对象 size:大于0的整数,新建共享内存的大小,以字节为单位。只获取共享内存时,指定为0. shmflg: 0表示取共享内存标识符,如不存在则函数会报错; IPC_CREAT,如果内核中不存在键值与key相等的共享内存时,则创建一个共享内存;如果存在这样的共享内存则返回共享内存的标识符; IPC_CREATIPC_EXCL: 如果内核中不存在键值与key相等的共享内存,则新建一个消息队列;如果存在这样的共享内存则报错; 函数返回值:成功则返回内存的标识符;出错则返回-1,错误原因存在于error中 映射共享内存到调用进程的地址空间shmat: void*shmat(int shmid, const void *shmaddr, int shmflg) msqid:共享内存标识符 shmaddr:指定共享内存出现在进程内存地址的什么位置,直接指定为NULL让内核自己决定一个合适的地址位置。 shmflg: SHM_RDONLY 只读模式,其他为读写模式 函数返回值:成功则返回附加好的共享内存地址;出错返回-1,错误原因存在于error中 断开共享内存连接shmdt: intshmdt(const void *shmaddr) 功能:传入shmaddr,连接共享的内存起始地址;断开成功则返回0,出错则返回-1,错误原因存在于error中。 父子进程间通讯实例: #include #include #include #include #include #include int main(int argc, char **argv){ if(argc< 2){ //需要输入共享的数据 printf("pleaseinput the shared data.n"); exit(-1); } intshmid; shmid= shmget(0,1024,IPC_CREAT); if(shmid== -1){ // 申请共享内存失败 printf("createshare memory failed.n"); exit(-1); } if(fork()){ // 父进程之中 char*p_shmaddr; p_shmaddr= shmat(shmid, NULL, 0); // 映射到父进程之中的一个地址 memset(p_shmaddr,0, 1024); // 初始化共享内存 strcpy(p_shmaddr,argv[1]); // 拷贝共享数据到共享内存 wait(NULL); //等待子进程结束 exit(0); } else{ sleep(2); //等待父进程写入数据 char*c_shmaddr; c_shmaddr= shmat(shmid,NULL,0); // 映射到子进程之中一个地址,具体由kernel 指配 printf("theshare data is: %sn", c_shmaddr); //子进程输出共享的数据 exit(0); } }
❻ Linux进程间通信
linux下进程间通信的几种主要手段简介:
一般文件的I/O函数都可以用于管道,如close、read、write等等。
实例1:用于shell
管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。
实例二:用于具有亲缘关系的进程间通信
管道的主要局限性正体现在它的特点上:
有名管道的创建
小结:
管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。
FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。
管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。
要灵活应用管道及FIFO,理解它们的读写规则是关键。
信号生命周期
信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。
可以从两个不同的分类角度对信号进行分类:(1)可靠性方面:可靠信号与不可靠信号;(2)与时间的关系上:实时信号与非实时信号。
(1) 可靠信号与不可靠信号
不可靠信号 :Linux下的不可靠信号问题主要指的是信号可能丢失。
可靠信号 :信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()以及信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。
对于目前linux的两个信号安装函数:signal()及sigaction()来说,它们都不能把SIGRTMIN以前的信号变成可靠信号(都不支持排队,仍有可能丢失,仍然是不可靠信号),而且对SIGRTMIN以后的信号都支持排队。这两个函数的最大区别在于,经过sigaction安装的信号都能传递信息给信号处理函数(对所有信号这一点都成立),而经过signal安装的信号却不能向信号处理函数传递信息。对于信号发送函数来说也是一样的。
(2) 实时信号与非实时信号
前32种信号已经有了预定义值,每个信号有了确定的用途及含义,并且每种信号都有各自的缺省动作。如按键盘的CTRL ^C时,会产生SIGINT信号,对该信号的默认反应就是进程终止。后32个信号表示实时信号,等同于前面阐述的可靠信号。这保证了发送的多个实时信号都被接收。实时信号是POSIX标准的一部分,可用于应用进程。非实时信号都不支持排队,都是不可靠信号;实时信号都支持排队,都是可靠信号。
发送信号的主要函数有:kill()、raise()、 sigqueue()、alarm()、setitimer()以及abort()。
调用成功返回 0;否则,返回 -1。
sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然也支持前32种),支持信号带有参数,与函数sigaction()配合使用。
sigqueue的第一个参数是指定接收信号的进程ID,第二个参数确定即将发送的信号,第三个参数是一个联合数据结构union sigval,指定了信号传递的参数,即通常所说的4字节值。
sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。
inux主要有两个函数实现信号的安装: signal() 、 sigaction() 。其中signal()在可靠信号系统调用的基础上实现, 是库函数。它只有两个参数,不支持信号传递信息,主要是用于前32种非实时信号的安装;而sigaction()是较新的函数(由两个系统调用实现:sys_signal以及sys_rt_sigaction),有三个参数,支持信号传递信息,主要用来与 sigqueue() 系统调用配合使用,当然,sigaction()同样支持非实时信号的安装。sigaction()优于signal()主要体现在支持信号带有参数。
消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的
消息队列的内核持续性要求每个消息队列都在系统范围内对应唯一的键值,所以,要获得一个消息队列的描述字,只需提供该消息队列的键值即可;
消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。
信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程也可以修改该标志。除了用于访问控制外,还可用于进程同步。信号灯有以下两种类型:
int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信号灯集ID,sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。
int semctl(int semid,int semnum,int cmd,union semun arg)
该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;arg用于设置或返回信号灯信息。
进程间需要共享的数据被放在一个叫做IPC共享内存区域的地方,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。系统V共享内存通过shmget获得或创建一个IPC共享内存区域,并返回相应的标识符。内核在保证shmget获得或创建一个共享内存区,初始化该共享内存区相应的shmid_kernel结构注同时,还将在特殊文件系统shm中,创建并打开一个同名文件,并在内存中建立起该文件的相应dentry及inode结构,新打开的文件不属于任何一个进程(任何进程都可以访问该共享内存区)。所有这一切都是系统调用shmget完成的。
shmget()用来获得共享内存区域的ID,如果不存在指定的共享区域就创建相应的区域。shmat()把共享内存区域映射到调用进程的地址空间中去,这样,进程就可以方便地对共享区域进行访问操作。shmdt()调用用来解除进程对共享内存区域的映射。shmctl实现对共享内存区域的控制操作。这里我们不对这些系统调用作具体的介绍,读者可参考相应的手册页面,后面的范例中将给出它们的调用方法。
注:shmget的内部实现包含了许多重要的系统V共享内存机制;shmat在把共享内存区域映射到进程空间时,并不真正改变进程的页表。当进程第一次访问内存映射区域访问时,会因为没有物理页表的分配而导致一个缺页异常,然后内核再根据相应的存储管理机制为共享内存映射区域分配相应的页表。
❼ 共享内存原理
Linux的2.2.x内核支持多种共享内存方式,如mmap()系统调用,Posix共享内存,以及系统V共享内存。
共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。
系统V共享内存原理
进程间需要共享的数据被放在一个叫做IPC共享内存区域的地方,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。系统V共享内存通过shmget获得或创建一个IPC共享内存区域,并返回相应的标识符。内核在保证shmget获得或创建一个共享内存区,初始化该共享内存区相应的shmid_kernel结构注同时,还将在特殊文件系统shm中,创建并打开一个同名文件,并在内存中建立起该文件的相应dentry及inode结构,新打开的文件不属于任何一个进程(任何进程都可以访问该共享内存区)。所有这一切都是系统调用shmget完成的。
Linux 有一个系统调用叫 mmap(),这个 mmap() 可以把一个文件映射到进程的地址空间(进程使用的虚拟内存),这样进程就可以通过读写这个进程地址空间来读写这个文件。
你可能会觉得奇怪,我明明写的是内存啊,怎么会变成写文件了呢?他们之间是怎么转化的呢?
没错,你写的确实是内存,但是你写的这个内存不是普通的内存,你写在这个内存上的内容,过段时间后会被内核写到这个文件上面。而写文件,其实最后都会变成写数据到设备里(硬盘、Nand Flash 等)。
mmap的优点主要在为用户程序随机的访问,操作,文件提供了一个方便的操作方法;其次就是为不同进程共享大批量数据提供高效的手段;另外就是对特大文件(无法一次性读入内存)的处理提供了一种有效的方法。
内核里存在着一个特殊的文件系统,这个文件系统的存储介质不是别的,正是 RAM。
在 shmget() 调用之后,系统会为你在这个文件系统上创建一个文件,但是这个时候仅仅是创建了这个文件。
然后你就应该调用 shmat() 了,调用 shmat() 之后,内核会使用 mmap 把这个文件映射到你的进程地址空间,这个时候你就能直接读写映射后的地址了。
过段时间,内核把你写的 内容写到了文件里面,但是,这个文件的存储介质是内存,所以他会怎么做?看明白了吧?
答案:他会写入内存呀
我们先来看看如果不使用内存映射文件的处理流程是怎样的,首先我们得先读出磁盘文件的内容到内存中,然后修改,最后回写到磁盘上。第一步读磁盘文件是要经过一次系统调用的,它首先将文件内容从磁盘拷贝到内核空间的一个缓冲区,然后再将这些数据拷贝到用户空间,实际上是两次数据拷贝。第三步回写也一样也要经过两次数据拷贝。
所以我们基本上会有四次数据的拷贝了,因为大文件数据量很大,几十GB甚至更大,所以拷贝的开销是非常大的。
而内存映射文件是操作系统的提供的一种机制,可以减少这种不必要的数据拷贝,从而提高效率。它由mmap()将文件直接映射到用户空间,mmap()并没有进行数据拷贝,真正的数据拷贝是在缺页中断处理时进行的,由于mmap()将文件直接映射到用户空间,所以中断处理函数根据这个映射关系,直接将文件从硬盘拷贝到用户空间,所以只进行了一次数据拷贝 ,比read进行两次数据拷贝要好上一倍,因此,内存映射的效率要比read/write效率高。
一般来说,read write操作可以满足大多数文件操作的要求,但是对于某些特殊应用领域所需要的几十GB甚至更大的存储,这种通常的文件处理方法进行处理显然是行不通的。
mmap将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。munmap执行相反的操作,删除特定地址区域的对象映射。
当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内存写时不会写入超过当前文件大小的内容.
参考地址:
❽ linux进程间通信 socket 共享内存 哪个快
进程间通讯进程间通信就是不同进程之间传播或交换信息,进程的用户空间是互相独立的,进程之间可以利用系统空间交换信息。 管道(pipe)管道是一种半双工的通信方式,数据只能单向流动。如果要进行双工通信,需要建立两个管道。 管道只能在具有亲缘关系的进程间使用,例如父子进程或兄弟进程。 有名管道(named pipe) 有名管道也是双半工的通信方式,但它允许无亲缘关系的进程间使用。 信号量(semophore) 信号量常用来作为一种锁机制来使用,它是一个记数器,用来控制多进程对共享资源的访问,防止多个进程同时访问一个共享资源。信号量主要用作为进程间或同一进程间不同线程之间的同步手段。 信号(sinal) 信号是一种比较复杂的通信方式,用于通知接收进程某些事件已经发生,要注意信号处理中调用的函数是否为信号安全。 消息队列(message queue) 消息队列是由消息的链表组成,存放在内核中并由消息队列标识符标识。 共享内存(shared memory) 共享内存就是映射一段被其他进程所访问的内存,这段共享内存由一个进程创建,可由多个进程访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式的低运行效率而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 套接字(socket) 套接字也是进程间通信的一种方式,与其他方式不同的是,它可以用在不同主机间的进程通信(也是它的主要用途)。 几种方式的缺点 管道: 速度慢,容量有限,只能用于亲缘关系进程间通信。 有名管道: 同管道,不过允许无亲缘关系进程间通信。 消息队列: 容量受系统限制,队列中会遗留数据,读时要考虑到这些未读完的数据。 信号量: 主要用于同步,无法传递复杂的数据信息。
❾ linux下通过shmget创建的共享内存,是属于用户空间还是内核空间
属于用户空间. shmat后返回的地址空间属于用户空间, 不同进程可以将同一物理内存区域映射到各自的用户空间中。该空间可以随意读写。note: 一个小屁进程,在用户态时,是没有权限操作内核空间的。
虚拟地址空间=用户空间+内核空间。
❿ linux系统的进程间通信有哪几种方式
一、方式
1、管道(Pipe)及有名管道( mkpipe):
管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
2、信号(Signal):
信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身。
linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction。
实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数。
3、消息队列(Message):
消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
4、共享内存:
使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
5、信号量(semaphore):
主要作为进程间以及同一进程不同线程之间的同步手段。
6、套接口(Socket):
更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。
二、概念
进程间通信概念:
IPC—-InterProcess Communication
每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到所以进程之间要交换数据必须通过内核。
在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信。
(10)linux进程间共享内存扩展阅读
1)无名管道:
管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程)。
管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,构成两进程间通信的一个媒介。
数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。
2)有名管道:
不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之间)。
因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。