❶ 如何向android添加内核驱动模块
1,同目录下的makefile,如
#
# Makefile for instrial I/O Magnetometer sensors
#
obj-$(CONFIG_SENSORS_AK8975) += ak8975.o
obj-$(CONFIG_SENSORS_HMC5843) += hmc5843.o
2,同目录下的kconfig
#
# Magnetometer sensors
#
comment "Magnetometer sensors"
config SENSORS_AK8975
tristate "Asahi Kasei AK8975 3-Axis Magnetometer"
depends on I2C
help
Say yes here to build support for Asahi Kasei AK8975 3-Axis
Magnetometer.
To compile this driver as a mole, choose M here: the mole
will be called ak8975.
3,总的config(配置变量为Y)
各项目配置文件的位置不同,
coffee:kernel/arch/arm/configs/M7023Q-debug-perf_defconfig
juice:common/customer/configs
配置信息如下:
# CONFIG_CFG80211 is not set
CONFIG_EXPERIMENTAL=y
CONFIG_LOCALVERSION="$(KERNEL_LOCAL_VERSION)-perf"
CONFIG_SWAP=y
CONFIG_ZRAM=m
CONFIG_SYSVIPC=y
CONFIG_SENSORS_AK8975=y
......
查看变量是否在编译时配置成功:
out/target/proct/m7023q/obj/KERNEL_OBJ/include/generated/Autoconf.h
查找CONFIG_SENSORS_AK8975
若在编译时有配置成功,将找到这一行:
#define CONFIG_SENSORS_AK8975 1
4、修改板级文件:
4.0及后续项目统一在:kernel/arch/arm/mach-msm/board-qrd7627a.c
注意juice中,很多配置(如tp)写在kernel/arch/arm/mach-msm/board-msm7627a-io.c
在代码中增加新模块的内容,应该有两处,第一处设置函数和结构体,第二处实际调用,注意引用上述第3步新增的编译开关将代码限制起来。
这些内容大多可以拷贝其它模块,但是名字要和driver中的相同,注意要改的地方除了名字之外,还有中断脚和I2C脚。其中固定模块的中断脚大部分时候不会改变(如tp就是int:48,reset:26),除非板子的datasheet特别注明才需要改变。但是I2C脚是会随着slaver device的改变而改变的,需要查清楚。
配置platform_data:
一般需要初始化一个xxx_platform_data结构体(这个结构体的声明应该让驱动文件可视,probe中才知道去读某个platformdata.yyy),并在i2c_board_info结构体中用.platform_data指向它,然后这个i2c_board_info将在板级文件中被注册(作为函数i2c_register_board_info()的参数)。而这个.platform_data很有可能在驱动的probe函数中调用到,例如:
static struct msg2133_ts_platform_data msg2133_platformdata= {
.irq = 0,
.reset = GPIO_TP_RESET,
};
static struct i2c_board_info i2c_info_msg2133_dpt = {
I2C_BOARD_INFO("msg2133", 0x27),
.platform_data = &msg2133_platformdata,
};
i2c_info_msg2133_dpt.platform_data->irq = gpio_to_irq(GPIO_TP_INT);//结构体初始化的时候只能以常量赋值,因为此处需要做GPIO到irq的映射,所以要在此处赋值。
i2c_register_board_info(MSM_GSBI1_QUP_I2C_BUS_ID, &i2c_info_msg2133_dpt, 1);
在驱动的probe中:pdata =client->dev.platform_data;
...... = pdata.yyy; ......//(msg2133_ts_platform_data在该文件中可见)
❷ 如何在android安卓添加或加载设备驱动
驱动装到手机上,把模块连接的时候根据提示操作就行了!
就像iPhone的App Store一样,Android也有自己的“Market”,目前Market上每天都有新增加的软件和游戏,并且现阶段出现的所有应用软件和程序都是免费的。以下是Market使用教程:
1.打开G1的主菜单,找到并开启Market软件商店。在Macket主菜单中:
AndroidApplications:经过Google认可的Android软件。
AndroidGames:经过Google认可的Android游戏。
AndroidSearch:搜索Market软件商店里的软件。
AndroidMy downloads:查看你从Market下载好的软件。
Android主菜单上面可以滚动的图标是Google官方随机推荐的一些第三方软件。
2. 先点击“Applications”后,会出现所有的第三方软件分类,除了第一个All applications是指查看所有的第三方软件之外,其他均为细分类。随便点击一个分类,则会出现该分类下的所有对应软件,默认情况下By popularity是指按人气由高到低的顺序显示该分类下的软件,By date则是按照时间的先后顺序来显示该分类下的软件。
3. 点击一个软件,你将会看到该软件的详细功能描述、网友评论、作者信息。如果你想安装此软件,可以直接点击“Install”,那么此时屏幕中将会显示该软件可能会涉及到的G1相关功能、个人隐私信息等提示,没有问题的话,你就可以直接点击“OK”,来下载并安装此软件了。
4. 如果你不想安装此软件,可以点击“Cancel”来取消,如果你此时想进行更多操作,请点击屏幕下方的 MENU按钮,在屏幕下方出现的白色窗口里:
AndroidMarket home:回到Market首页
AndroidSearch:开始搜索Market里的软件
AndroidMy downloads:查看已经下载好的软件
AndroidHelp:上网查看Market的相关使用帮助
AndroidSecurity:查看该软件所涉及的安全信息
AndroidFlag content:标记软件内容
Search——软件搜索篇
5. 如果你点击Search,画面顶部将会出现搜索栏,此时你可以随意输入你喜欢的软件名称,然后点击Search即可。
My downloads——已下载软件查看及卸载
6. 如果你点击My downloads,此时将会出现的软件列表即为你从Market上下载并安装的软件。若你想写在写在某个软件,只需要找到并点击这个软件,然后在点击“Uninstall”即可完成卸载工作!
❸ 怎样将android wifi编译成驱动模块
修改 init.rc:很多文章都有描述,但还是有些说明不清的地方,我先列出增加项,然后作些说明。
增加: mkdir /system/etc/wifi 0771 wifi wifi
chmod 0771 /system/etc/wifi
chmod 0660 /system/etc/wifi/wpa_supplicant.conf
chown wifi wifi /system/etc/wifi/wpa_supplicant.conf #wifi的原始配置文件
# wpa_supplicant socket
mkdir /data/system/wpa_supplicant 0771 wifi wifi
chmod 0771 /data/system/wpa_supplicant #放置wifi interface的地方
mkdir /data/misc/wifi 0771 wifi wifi
chmod 0771 /data/misc/wifi
chmod 0660 /data/misc/wifi/wpa_supplicant.conf #wifi的配置文件,将由wpa_supplicant根据实际配置写入该文件
mkdir /data/misc/wifi/sockets 0777 wifi wifi #与上层通过socket通信的路径
# Prepare for wifi
setprop wifi.interface ra0 #intreface名称设置,这在framework/base/wifi/java/android/net/wifi /WifiStateTracker.java中会用到,以处理dhcp。rt2070用ra0,而vt6656使用eth1。
这里0771对 目录权限的处理是为了所有用户能对下一级进行搜索,而红字特别提醒的权限配置,是因为/data/misc/wifi/sockets目录不仅为wifi拥有者服务,还因为通信的原因要和其他用户联系,要不然,将会出现Unable to open connection to supplicant on "/data/system/wpa_supplicant/ra0": Connection refused,或permission denied的错误。很多人干脆将上述所有的权限都设为0777,当然也行,但总觉得有些粗糙。
service的修改:
service wpa_supplicant /system/bin/logwrapper /system/bin/wpa_supplicant /
-Dwext -ira0 -c/data/misc/wifi/wpa_supplicant.conf #也可以用/system/etc/wifi/wpa_supplicant.conf代替
user root
group system wifi inet
# socket wpa_wlan0 dgram 660 wifi wifi #屏蔽该项是因为这项是用于UDP连接的
disable
oneshot
service dhcpcd /system/bin/logwrapper /system/bin/dhcpcd -d -B ra0
group system dhcp wifi
disabled
oneshot
❹ android ndk 开发只写jni层的代码吗不能写hal层的代码吗以及linux驱动模块的代码嘛
NDK开发可以linux下的android源码中编译单个模块生成.so文件,然后放在上层android 项目中调用,你在源码中吧,你要编译的模块驱动的C代码放进去,按照JIN规则取号名字,然后编\编译,就行了,把生成的 so文件导入到上层项目,然后你知道C的函数名,在java层写本地方法和,C的函数名一样,记得类名也别搞错了,就行了。不要烧录整个系统,只要编译你需要的驱动模块生成so文件就行
❺ android 没有驱动程序怎么解决
SB设备。 二是USB设备不能被电脑识别。我们先要判断是电脑的问题还是USB设备的问题。我们可以用其他的USB设备来测试电脑有没有问题。 如果是电脑的问题。你的电脑是不是被病毒破坏。USB2.0的驱动是不是安装完好或版本不兼容。有没有软件冲突(先解决软件问题)一般情况出来一个安装驱动程序的提示。 如果是电脑硬件问题。我们先用万用表测量USB的四条线(红+5V 白DATA-数据- 绿DATA-数据- 黑 地线)万用表红表笔对地黑表笔测量(白线和渌线。的阻值不相差50欧,这两条线都是从南桥出来的,如果阻值变化过大则可以判断是南桥问题。说明USB在南桥内部的模块烧毁。 在来看看外面的USB设备现在很多都要驱动程序。即使没有驱动程序也不会出来无法识别的情况。出现无法识别的情况有几种。一USB数据线不通或接触不良一般都接触那个地方因为时间长可能里面生锈有胀东西还可能有东西在里面挡住了。二 USB线不通。红线不通什么反应也不会有,白线不通无法识别。绿线不通也是无法识别。白线和绿线不可以接反。也是无法识别。黑线不通也没有反应,这个测量的方法上面已经讲到。 注意.红线5V电压低也可导致无法识别. 三 USB机板内部问题。1晶振不良,不起振。2晶振电容不良(20P)有两个 3复位电容电阻不良。复位电压偏底偏高 4三端IC不良为IC提供电压不够5. 主IC不良 祝你好运!
❻ Android 重学系列 ion驱动源码浅析
上一篇文章,在解析初始化GraphicBuffer中,遇到一个ion驱动,对图元进行管理。首先看看ion是怎么使用的:
我们按照这个流程分析ion的源码。
如果对ion使用感兴趣,可以去这篇文章下面看 https://blog.csdn.net/hexiaolong2009/article/details/102596744
本文基于Android的Linux内核版本3.1.8
遇到什么问题欢迎来本文讨论 https://www.jianshu.com/p/5fe57566691f
什么是ion?如果是音视频,Camera的工程师会对这个驱动比较熟悉。最早的GPU和其他驱动协作申请一块内存进行绘制是使用比较粗暴的共享内存。在Android系统中使用的是匿名内存。最早由三星实现了一个Display和Camera共享内存的问题,曾经在Linux社区掀起过一段时间。之后各路大牛不断的改进之下,就成为了dma_buf驱动。并在 Linux-3.3 主线版本合入主线。现在已经广泛的运用到各大多媒体开发中。
首先介绍dma_buf的2个角色,importer和exporter。importer是dma_buf驱动中的图元消费者,exporter是dma_buf驱动中的图元生产者。
这里借用大佬的图片:
ion是基于dma_buf设计完成的。经过阅读源码,其实不少思路和Android的匿名内存有点相似。阅读本文之前就算不知道dma_buf的设计思想也没关系,我不会仔细到每一行,我会注重其在gralloc服务中的申请流程,看看ion是如何管理共享内存,为什么要抛弃ashmem。
我们先来看看ion的file_operation:
只有一个open和ioctl函数。但是没有mmap映射。因此mmap映射的时候一定其他对象在工作。
我们关注显卡英伟达的初始化模块。
文件:/ drivers / staging / android / ion / tegra / tegra_ion.c
mole_platform_driver实际上就是我之前经常提到过的mole_init的一个宏,多了一个register注册到对应名字的平台中的步骤。在这里面注册了一个probe方法指针,probe指向的tegra_ion_probe是加载内核模块注册的时候调用。
先来看看对应的结构体:
再来看看对应ion内的堆结构体:
完成的事情如下几个步骤:
我们不关注debug模式。其实整个就是我们分析了很多次的方法。把这个对象注册miscdevice中。等到insmod就会把整个整个内核模块从dev_t的map中关联出来。
我们来看看这个驱动结构体:
文件:/ drivers / staging / android / ion / ion_heap.c
这里有四个不同堆会申请出来,我们主要来看看默认的ION_HEAP_TYPE_SYSTEM对应的heap流程。
其实真正象征ion的内存堆是下面这个结构体
不管原来的那个heap,会新建3个ion_system_heap,分别order为8,4,0,大于4为大内存。意思就是这个heap中持有一个ion_page_pool 页资源池子,里面只有对应order的2的次幂,内存块。其实就和伙伴系统有点相似。
还会设置flag为ION_HEAP_FLAG_DEFER_FREE,这个标志位后面会用到。
文件:/ drivers / staging / android / ion / ion_page_pool.c
在pool中分为2个链表一个是high_items,另一个是low_items。他们之间的区分在此时就是以2为底4的次幂为分界线。
文件:/ drivers / staging / android / ion / ion.c
因为打开了标志位ION_HEAP_FLAG_DEFER_FREE和heap存在shrink方法。因此会初始化两个回收函数。
文件:/ drivers / staging / android / ion / ion_heap.c
此时会创建一个内核线程,调用ion_heap_deferred_free内核不断的循环处理。不过由于这个线程设置的是SCHED_IDLE,这是最低等级的时间片轮转抢占。和Handler那个adle一样的处理规则,就是闲时处理。
在这个循环中,不断的循环销毁处理heap的free_list里面已经没有用的ion_buffer缓冲对象。
文件:/ drivers / staging / android / ion / ion_system_heap.c
注册了heap的销毁内存的方法。当系统需要销毁页的时候,就会调用通过register_shrinker注册进来的函数。
文件:/ drivers / staging / android / ion / ion_page_pool.c
整个流程很简单,其实就是遍历循环需要销毁的页面数量,接着如果是8的次幂就是移除high_items中的page缓存。4和0则销毁low_items中的page缓存。至于为什么是2的次幂其实很简单,为了销毁和申请简单。__free_pages能够整页的销毁。
文件:/ drivers / staging / android / ion / ion.c
主要就是初始化ion_client各个参数,最后把ion_client插入到ion_device的clients。来看看ion_client结构体:
核心还是调用ion_alloc申请一个ion缓冲区的句柄。最后把数据拷贝会用户空间。
这个实际上就是找到最小能承载的大小,去申请内存。如果8kb申请内存,就会拆分积分在0-4kb,4kb-16kb,16kb-128kb区间找。刚好dma也是在128kb之内才能申请。超过这个数字就禁止申请。8kb就会拆成2个4kb保存在第一个pool中。
最后所有的申请的page都添加到pages集合中。
文件:/ drivers / staging / android / ion / ion_page_pool.c
能看到此时会从 ion_page_pool冲取出对应大小区域的空闲页返回上层,如果最早的时候没有则会调用ion_page_pool_alloc_pages申请一个新的page。由于引用最终来自ion_page_pool中,因此之后申请之后还是在ion_page_pool中。
这里的处理就是为了避免DMA直接内存造成的缓存差异(一般的申请,默认会带一个DMA标志位)。换句话说,是否打开cache其实就是,关闭了则使用pool的cache,打开了则不使用pool缓存,只依赖DMA的缓存。
我们可以看另一个dma的heap,它是怎么做到dma内存的一致性.
文件: drivers / staging / android / ion / ion_cma_heap.c
能看到它为了能办到dma缓存的一致性,使用了dma_alloc_coherent创建了一个所有强制同步的地址,也就是没有DMA缓存的地址。
这里出现了几个新的结构体,sg_table和scatterlist
文件:/ lib / scatterlist.c
这里面实际上做的事情就是一件:初始化sg_table.
sg_table中有一个核心的对象scatterlist链表。如果pages申请的对象数量<PAGE_SIZE/sizeof(scatterlist),每一项sg_table只有一个scatterlist。但是超出这个数字就会增加一个scatterlist。
用公式来说:
换句话说,每一次生成scatterlist的链表就会直接尽可能占满一页,让内存更好管理。
返回了sg_table。
初始化ion_handle,并且记录对应的ion_client是当前打开文件的进程,并且设置ion_buffer到handle中。使得句柄能够和buffer关联起来。
每当ion_buffer需要销毁,
❼ android pci 设备驱动需要depend on 什么模块
需要启动Android驱动模块Makefile编写。
PCI是一种外设总线规范。我们先来看一下什么是总线:总线是一种传输信号的路径或信道。典型情况是,总线是连接于一个或多个导体的电气连线,总线上连接的所有设备可在同一时间收到所有的传输内容。总线由电气接口和编程接口组成。本文讨论Linux 下的设备驱动,所以,重点关注编程接口。
CI是Peripheral Component Interconnect(外围设备互联)的简称,是普遍使用在桌面及更大型的计算机上的外设总线。PCI架构被设计为ISA标准的替代品,他有三个主要目标:获得在计算机和外设之间传输数据时更好的性能;尽可能的平台无关;简化往系统中添加和删除外设的工作。
❽ 关于android系统蓝牙都用什么模块,有单独的android驱动吗
Android系统的源码中蓝牙部分的分布式这样的:
1. App部分主要包括OPP和PBAP以及HFP,当然还有settings部分,代码分布如下:
(1) /packages/app/Bluetooth/src/com/android/bluetooth/opp
(2) /packages/app/Bluetooth/src/com/android/bluetooth/pbap
(3) /packages/app/Phone/src/com/android/phone/ 中和BT相关的部分,主要是HFHS打电话相关的
(4) /packages/app/Settings/src/com/android/settings/bluetooth/ 主要是蓝牙开启,搜索,配对等
2. Framework部分主要包括BluetoothAdapter,BluetoothService,BluetoothEventLoop,BluetoothA2dpService等核心类,代码分布如下:
(1)/frameworks/base/core/java/android/server/ 包含BluetoothService,BluetoothEventLoop等核心类,但是并没有向用户应用程序提供接口,属于系统的类。
(2)/frameworks/base/core/java/android/bluetooth 包含了BluetoothAdapter, BluetoothSocket, BluetoothServerSocket等一系列类,这些类是系统向应用程序提供的接口,编写蓝牙相关的应用程序时会用到这些类,检查BT是否打开,搜索设备等等。如果编写蓝牙应用程序,需要熟悉该部分类的功能。
(3) /frameworks/base/core/jni/ 中包含Bluetooth相关的文件,如 android_server_BluetoothService.cpp 该部分主要是java层和c/c++层进行通信的
3. Bluez部分,主要包括各个协议的实现,如A2dp,AVRCP,AVDTP,HID,HDP,PAN,DUN以及对BT host的实现,通过该部分向BT Controler部分发送HCI命令,代码分布服下:
/external/bluetooth/bluez
4. BluetDroid部分,主要用于开关蓝牙,芯片上电部分(不属于驱动,可以算是硬件抽象层(HAL)), 代码分布如下:
/system/bluetooth/
5. kernel部分,主要包括RFCOMM,L2CAP等协议以及HCI的实现,代码分布如下:
/kernel/net/bluetooth/
6. driver部分,该部分代码还真没了解过,代码分布:
/kernel/drivers/bluetooth/
另外,driver部分和具体芯片密切相关,有时在下面的目录下也会有:
/vendor/
/device/
❾ 如何写一个Android USB接口驱动
说到 android 驱动是离不开 Linux 驱动的。Android 内核采用的是 Linux2.6 内核 (最近Linux 3.3 已经包含了一些 Android 代码)。但 Android 并没有完全照搬 Linux 系统内核,除了对Linux 进行部分修正,还增加了不少内容。android 驱动 主要分两种类型:Android 专用驱动 和 Android 使用的设备驱动(linux)。
Android 专有驱动程序:
1)Android Ashmem 匿名共享内存; 为用户空间程序提供分配内存的机制,为进程间提供大块共享内存,同时为内核提供回收和管理这个内存。
2)Android Logger 轻量级的LOG(日志) 驱动;
3)Android Binder 基于 OpenBinder 框架的一个驱动;
4)Android Power Management 电源管理模块;
5)Low Memory Killer 低内存管理器;
6)Android PMEM 物理内存驱动;
7)USB Gadget USB 驱动(基于 gaeget 框架);
8)Ram Console 用于调试写入日志信息的设备;
9)Time Device 定时控制设备;
10)Android Alarm 硬件时钟;
Android 上的设备驱动:
1)Framebuff 显示驱动;
2)Event 输入设备驱动;
3)ALSA 音频驱动;
4)OSS 音频驱动;
5)v412摄像头:视频驱动;
6)MTD 驱动;
7)蓝牙驱动;
8)WLAN 设备驱动;
Android 专有驱动程序
1.Android Ashmem
为用户空间程序提供分配内存的机制,为进程间提供大块共享内存,同时为内核提供回收和管理这个内存。
设备节点:/dev/ashmen .主设备号 10.
源码位置: include/linux/ashmen.h Kernel /mm/ashmen.c
相比于 malloc 和 anonymous/named mmap 等传统的内存分配机制,其优势是通过内核驱动提供了辅助内核的内存回收算法机制(pin/unoin)
2.Android Logger
无论是底层的源代码还上层的应用,我们都可以使用 logger 这个日志设备看、来进行调试。
设备节点: /dev/log/main /dev/log/event /dev/log/radio
源码位置:include/linux/logger.h include/linux/logger.c
3.Android Binder
IPC Binder 一种进程间通信机制。他的进程能够为其它进程提供服务 ----- 通过标准的 Linux 系统调用 API。
设备节点 :/dev/binder
源码位置:Kernel/include/linux/binder.h Kernel/drivers/misc/binder.c
4.Android Power Management
一个基于标准 linux 电源管理的轻量级 Android 电源管理系统,在 drivers/android/power.c kernel/power/
5.Low Memory Killer
它在用户空间中指定了一组内存临界值,当其中某个值与进程描述中的 oom_adj 值在同一范围时,该进程将被Kill掉(在parameters/adj中指定oome_adj 的最小值)。它与标准的Linux OOM机制类似,只是实现方法不同
源码位置:drivers/misc/lowmemorykiller.c
6.Android PMEM
PMEM 主要作用就是向用户空间提供连续的物理内存区域。
1.让 GPU 或 VPU 缓冲区共享 CPU 核心。
2.用于 Android service 堆。
源码位置:include/linux/android_pmem.h drivers/android/pmem.c
7.USB Gadget
基于标准 Linux USB gaeget 驱动框架的设备驱动。
源码位置:drivers/usb/gadet/
8.Ram Console
为了提供调试功能,android 允许将调试日志信息写入这个设备,它是基于 RAM 的 buffer.
源码位置: drivers/staging/android/ram_console.c
9.Time Device
定时控制,提供了对设备进行定时控制的功能。
源码位置:drivers/staging/android/timed_output.c(timed_gpio.c)
10.Android Alarm
提供一个定时器,用于把设备从睡眠状态唤醒,同时它还提供了一个即使在设备睡眠时也会运行的时钟基准。
设备节点:/dev/alarm
源码位置:drivers/trc/alarm.c
Android 设备驱动
1. Framebuffer 帧缓存设备
Framebuffer 驱动在 Linux 中是标准的显示设备的驱动。对于 PC 系统,它是显卡的驱动 ; 对于嵌入式 SOC 处理器系统,它是 LCD 控制器或者其他显示控制器的驱动。它是一个字符设备,在文件系统中设备节点通常是 /dev/fbx 。 每个系统可以有多个显示设备 , 依次用 /dev/fbO 、 /dev/fb l
等来表示。在 Android 系统中主设备号为 29 ,次设备号递增生成。
Android 对 Framebuffer 驱动的使用方式是标准的 , 在 / dev / graphie / 中的 Framebuffer 设备节点由 init 进程自动创建 , 被 libui 库调用 。 Android 的 GUI 系统中 , 通过调用 Framebuffer 驱动的标准接口,实现显示设备的抽象。
Framebuff的结构框架和实现 :
linux LCD驱动(二)--FrameBuffer
Linux LCD驱动(四)--驱动的实现
2.Event输入设备驱动
Input 驱动程序是 Linux 输入设备的驱动程序 , 分为游戏杆 (joystick) 、 鼠标 (mouse 和 mice)和事件设备 (Event queue)3 种驱动程序。其中事件驱动程序是目前通用的程序,可支持键盘 、 鼠标、触摸屏等多种输入设备。 Input 驱动程序的主设备号是 l3 ,每一种 Input 设备从设备号占 用5 位 , 3 种从设备号分配是 : 游戏杆 0 ~ 61 ; Mouse 鼠标 33 ~ 62 ; Mice 鼠标 63 ; 事件设备 64 ~ 95 ,各个具体的设备在 misc 、 touchscreen 、 keyboard 等目录中。
Event 设备在用户空问使用 read 、 ioctl 、 poll 等文件系统的接口操作, read 用于读取输入信息, ioctl 用于获取和设置信息, poll 用于用户空间的阻塞,当内核有按键等中断时,通过在中断中唤醒内核的 poll 实现。
Event 输入驱动的架构和实现:
Linux设备驱动之——input子系统
3.ALSA音频驱动
高级 Linux 声音体系 ALSA(Advanced Linux Sound Architecture ) 是为音频系统提供驱动 的Linux 内核组件,以替代原先的开发声音系统 OSS 。它是一个完全开放源代码的音频驱动程序集 ,除了像 OSS 那样提供一组内核驱动程序模块之外 , ALSA 还专门为简化应用程序的编写提供相应的函数库,与 OSS 提供的基于 ioctl 等原始编程接口相比, ALSA 函数库使用起来要更加方便一些
利用该函数库,开发人员可以方便、快捷地开发出自己的应用程序,细节则留给函数库进行内部处理 。 所以虽然 ALSA 也提供了类似于 OSS 的系统接口 , 但建议应用程序开发者使用音频函数库,而不是直接调用驱动函数。
ALSA 驱动的主设备号为 116 ,次设备号由各个设备单独定义,主要的设备节点如下:
/ dev / snd / contmlCX —— 主控制 ;
/ dev / snd / pcmXXXc —— PCM 数据通道 ;
/ dev / snd / seq —— 顺序器;
/ dev / snd / timer —— 定义器。
在用户空问中 , ALSA 驱动通常配合 ALsA 库使用 , 库通过 ioctl 等接口调用 ALSA 驱动程序的设备节点。对于 AIJSA 驱动的调用,调用的是用户空间的 ALsA 库的接口,而不是直接调用 ALSA 驱动程序。
ALSA 驱动程序的主要头文件是 include / sound ./ sound . h ,驱动核心数据结构和具体驱动的注册函数是 include / sound / core . h ,驱动程序 的核心实现是 Sound / core / sound . c 文件。
ALSA 驱动程序使用下面的函数注册控制和设备:
int snd _ pcm _ new (struct snd _ card * card , char * id , int device , int playback _ count , int capture _ count , struct snd _ pcm ** rpcm) ;
int snd ctl _ add(struct snd _ card * card , struct snd _ kcontrol * kcontro1) ;
ALSA 音频驱动在内核进行 menuconfig 配置时 , 配置选项为 “ Device Drivers ” > “ Sound c ard support ” 一 > “ Advanced Linux Sound Architecture ” 。子选项包含了 Generic sound devices( 通用声音设备 ) 、 ARM 体系结构支持,以及兼容 OSS 的几个选项。 ALsA 音频驱动配置对应的文件是sound / core / Kconfig 。
Android 没有直接使用 ALSA 驱动,可以基于 A-LSA 驱动和 ALSA 库实现 Android Audio 的硬件抽象层; ALSA 库调用内核的 ALSA 驱动, Audio 的硬件抽象层调用 ALSA 库。
4.OSS音频驱动
OSS(Open Sound System开放声音系统)是 linux 上最早出现的声卡驱动。OSS 由一套完整的内核驱动程序模块组成,可以为绝大多数声卡提供统一的编程接口。
OSS 是字符设备,主设备号14,主要包括下面几种设备文件:
1) /dev/sndstat
它是声卡驱动程序提供的简单接口,它通常是一个只读文件,作用也只限于汇报声卡的当前状态。(用于检测声卡)
2)/dev/dsp
用于数字采样和数字录音的设备文件。对于音频编程很重要。实现模拟信号和数字信号的转换。
3)/dev/audio
类似于/dev/dsp,使用的是 mu-law 编码方式。
4)/dev/mixer
用于多个信号组合或者叠加在一起,对于不同的声卡来说,其混音器的作用可能各不相同。
5)/dev/sequencer
这个设备用来对声卡内建的波表合成器进行操作,或者对 MIDI 总线上的乐器进行控制。
OSS 驱动所涉及的文件主要包括:
kernel/include/linux/soundcard.h
kernel/include/linux/sound.h 定义 OSS 驱动的次设备号和注册函数
kernel/sound_core.c OSS核心实现部分
5.V4l2视频驱动
V4L2是V4L的升级版本,为linux下视频设备程序提供了一套接口规范。包括一套数据结构和底层V4L2驱动接口。V4L2提供了很多访问接口,你可以根据具体需要选择操作方法。需要注意的是,很少有驱动完全实现了所有的接口功能。所以在使用时需要参考驱动源码,或仔细阅读驱动提供者的使用说明。
V4L2的主设备号是81,次设备号:0~255,这些次设备号里也有好几种设备(视频设备、Radio设备、Teletext、VBI)。
V4L2的设备节点: /dev/videoX, /dev/vbiX and /dev/radioX
Android 设备驱动(下)
MTD 驱动
Flash 驱动通常使用 MTD (memory technology device ),内存技术设备。
MTD 的字符设备:
/dev/mtdX
主设备号 90.
MTD 的块设备:
/dev/block/mtdblockX
主设备号 13.
MTD 驱动源码
drivers/mtd/mtdcore.c:MTD核心,定义MTD原始设备
drivers/mtd/mtdchar.c:MTD字符设备
drivers/mtd/mtdblock.c:MTD块设备
MTD 驱动程序是 Linux 下专门为嵌入式环境开发的新一类驱动程序。Linux 下的 MTD 驱动程序接口被划分为用户模块和硬件模块:
用户模块 提供从用户空间直接使用的接口:原始字符访问、原始块访问、FTL (Flash Transition Layer)和JFS(Journaled File System)。
硬件模块 提供内存设备的物理访问,但不直接使用它们,二十通过上述的用户模块来访问。这些模块提供了闪存上读、写和擦除等操作的实现。
蓝牙驱动
在 Linux 中,蓝牙设备驱动是网络设备,使用网络接口。
Android 的蓝牙协议栈使用BlueZ实现来对GAP, SDP以及RFCOMM等应用规范的支持,并获得了SIG认证。由于Bluez使用GPL授权, 所以Android 框架通过D-BUS IPC来与bluez的用户空间代码交互以避免使用未经授权的代码。
蓝牙协议部分头文件:
include/net/bluetooth/hci_core.h
include/net/bluetooth/bluetooth.h
蓝牙协议源代码文件:
net/bluetooth/*
蓝牙驱动程序部分的文件:
drivers/bluetooth/*
蓝牙的驱动程序一般都通过标准的HCI控制实现。但根据硬件接口和初始化流程的不同,又存在一些差别。这类初始化动作一般是一些晶振频率,波特率等基础设置。比如CSR的芯片一般通过BCSP协议完成最初的初始化配置,再激活标准HCI控制流程。对Linux来说,一旦bluez可以使用HCI与芯片建立起通信(一般是hciattach + hciconfig),便可以利用其上的标准协议(SCO, L2CAP等),与蓝牙通信,使其正常工作了。
WLAN 设备驱动(Wi-Fi)(比较复杂我面会专门写个wifi分析)
在linux中,Wlan设备属于网络设备,采用网络接口。
Wlan在用户空间采用标准的socket接口进行控制。
WiFi协议部分头文件:
include/net/wireless.h
WiFi协议部分源文件:
net/wireless/*
WiFi驱动程序部分:
drivers/net/wireless/*