导航:首页 > 操作系统 > linux进程内存最大内存

linux进程内存最大内存

发布时间:2022-09-27 17:36:26

㈠ 32位linux 支持多大内存

32位linux不打开PAE,则最多只能识别出4GB内存,若打开PAE,则最多可以识别出64GB内存。但是 32位系统下的进程一次最多只能寻址4GB的空间。 64位linux则没有32位系统的限制。因此对于内存大于4GB的机器来说,最好安装64位系统。

㈡ 32位linux能支持的最大物理内存有多少

32位linux不打开PAE,则最多只能识别出4GB内存,若打开PAE,则最多可以识别出64GB内存。但是 32位系统下的进程一次最多只能寻址4GB的空间。

64位linux则没有32位系统的限制。因此对于内存大于4GB的机器来说,最好安装64位系统。

简单介绍下如何让redhat 5-32位支持4G以上内存。

步骤1:

安装kernel-PAE.i686 内核包,让系统内核支持PAE物理地址扩展。

rpm-ivh kernel-PAE-2.6.18-53.el5.i686.rpm 安装的时候会报如下警告。

㈢ linux 支持的内存容量最大是多少

32位的Linux的内存最大支持到4GB,64位的Linux的最大支持内存在EB级别上。实际上最大支持多大的内容跟操作系统的种类无关,而是跟操作系统是32位还是64位有关。

32位的Linux和32位的Windows支持的最大内存是4GB,2的32次方字节=4294967296字节
64位的Linux和Windows支持的最大内存=16EB,2的64次方字节=18446744073709551616字节

注:1EB=1024PB,1PB=1024TB,1TB=1024GB

㈣ linux 下怎么查看一个进程占用内存大小

这里介绍下查看一个进程占用内存大小的方法。

1、首先单击桌面左上角的应用程序,选择系统工具选项,如下图所示。

㈤ Linux进程内存管理

对于包含MMU的处理器而言,Linux系统提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。在Linux系统中,进程的4GB内存空间被分为两个部分——用户空间与内核空间。用户空间的地址一般分布为0~3GB(即PAGE_OFFSET,在Ox86中它等于OxC0000000),这样,剩下的3~4GB为内核空间,用户进程通常只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。用户进程只有通过系统调用(代表用户进程在内核态执行)等方式才可以访问到内核空间。
每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表。而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。内核空间的虚拟地址到物理地址映射是被所有进程共享的,内核的虚拟空间独立于其他程序。
Linux中1GB的内核地址空间又被划分为物理内存映射区、虚拟内存分配区、高端页面映射区、专用页面映射区和系统保留映射区这几个区域。
对于x86系统而言,一般情况下,物理内存映射区最大长度为896MB,系统的物理内存被顺序映射在内核空间的这个区域中。当系统物理内存大于896MB时,超过物理内存映射区的那部分内存称为高端内存(而未超过物理内存映射区的内存通常被称为常规内存),内核在存取高端内存时必须将它们映射到高端页面映射区。Linux保留内核空间最顶部FIXADDR_TOP~4GB的区域作为保留区。
当系统物理内存超过4GB时,必须使用CPU的扩展分页(PAE)模式所提供的64位页目录项才能存取到4GB以上的物理内存,这需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以后的CPU允许内存最大可配置到64GB,它们具备36位物理地址空间寻址能力。
由此可见,对于32位的x86而言,在3~4GB之间的内核空间中,从低地址到高地址依次为:物理内存映射区→隔离带→vmalloc虚拟内存分配器区→隔离带→高端内存映射区→专用页面映射区→保留区。

㈥ linux进程内存相关

3种地址:虚拟地址、物理地址、逻辑地址
物理地址:内存的电路地址,对应内存地址线上的高低电平,物理可见的。
虚拟地址: 分页机制 的产物,也叫线性地址,是进程能看见的地址。
逻辑地址: 分段机制 的产物,属于inter cpu的历史遗留问题,linux可以当做不存在。
3种地址的转换:进程访问逻辑地址,linux内核根据分段机制装换成虚拟地址,然后把进程的页表和虚拟地址都告诉cpu,cpu就可以根据分页机制将虚拟地址装换成物理地址,然后访问内存。
linux内核中巧妙地屏蔽里分段机制,就是逻辑地址等于虚拟地址,访问内存只需要利用分页机制把虚拟地址转换成物理地址。

linux会为每个进程创建自己的虚拟地址空间,就是进程地址空间,64位系统就是128T的内存空间。需要注意的是,虚拟地址就是假的,一开始不和物理地址对应,也就是说不占用物理内存,只有当虚拟地址有写入操作是,内核会触发缺页,分配真实的物理地址给虚拟地址。物理地址的管理可参考 内核内存管理

从进程空间看,用户态闲置内存有3块,Stack、Memory Mapping Region、Heap,Stack是程序函数调用运行时需要的,不可控,能自由分配的内存就剩Memory Mapping Region、Heap了,linux系统提供的内存分配函数就是针对这两个区域的。
Heap操作函数:int brk(void *addr)、void *sbrk(intptr_t increment)
Memory Mapping Region操作函数:mmap()、munmap()

当然进程可以直接使用系统调用去申请内存,但是如果不管理的话,经过大量的申请和释放,会把进程空间切割的乱七八糟,导致不能申请大块的连续空间,为此就出现了内存管理模块,封装了系统调用,对进程提供malloc和free等高级函数。实际上,除了一些特殊程序,我们也很少用系统调用,一般都是使用内存管理模块提供的malloc和free,关系如下图:

内存管理模块用各种好处,例如不会每次操作都去执行系统调用,减少内存碎片的产生等等。
当然也有很多实现方式,例如常用的glibc的Ptmalloc,google的tcmalloc,facebook的jemalloc等。各有各的应用场景,blablabla....
使用时,gcc默认会链接glibc的,如果想使用其他lib,gcc链接时指定就能覆盖掉glibc的。

我们重点讲Ptmalloc,从而启发程序员在写程序时多考虑下内存分配情况,可以选择或自己实现适合自己程序的内存管理lib。
Ptmalloc的历史发展,blablabla......,Ptmalloc采取内存池管理,进程malloc时,通过brk(小于128K的内存)、mmap(大内存)从系统获取地址空间,给进程使用,进程free时,不会立即通过brk、munmap将地址空间还给系统,会自己维护起来,叫做空闲内存,这些空闲内存在进程再次malloc时,还会被分出去,并且空闲内存会在特定条件下合并起来还给系统。

内存分配区,管理了一片内存,对外分发和回收,可以理解为一个内存池,分main arena和non main arena。
main arena:最早的分配区,管理着所有可分配的内存,通过brk,mmap等系统调用向系统申请内存。注意只有main arena可以操作Heap。
non main arena:由于多线程的出现,如果多有线程都操作main arena就会有竞争,需要加锁控制,所以出现了non main arena,通过mmap向main arena申请一大块内存,然后自己管理,可以理解为内存分销商。
只有主线程在main arena上申请内存,子线程在non main arena上,non main arena的个数是有上限的,所以non main arena允许多个子线程共用,这样就涉及到加锁,所以程序涉及应避免子线程个数太多。

进程申请到的一块内存叫做一个内存片,arena内部使用chunk数据结构来描述内存片,包括进程正在使用的内存片,和进程free掉的空闲内存片

A:是否main arena内存
M:使用mmap内存
P:上一块是否被使用
size of previous chunk:上一块没有被使用时,表示上块长度,被使用时是上块用来存User data的。
Size of chunk:就是下一块的size of previous chunk,释放时填上本块长度,供下块合并用。

分给进程的内存片arena可以不管,但是进程free回来的,arena需要通过一定方式组织起来,方便进程再次使用。组织方式有下面几种:

bins是个数组,包含128个bin,每个bin是个链表,分small bin和large bin两种,各64个,small bin中chunk大小固定,两个相邻的small bin中的chunk大小相差8bytes,large bin中chunk大小是一定范围内的,其中的chunk按大小排列。
空闲chunk按大小选择合适的bin,按新旧顺序挂到链表上,优先分配旧的chunk。

不大于max_fast (默认值为64B)的chunk被释放后,首先会被放到fast bins 中,fast bins中的chunk并不改变它的使用标志P。这样也就无法将它们合并,当需要给用户分配的chunk小于或等于max_fast时,ptmalloc首先会在fast bins中查找相应的空闲块。在特定的时候,ptmalloc会遍历fast bins中的chunk,将相邻的空闲chunk进行合并,并将合并后的chunk加入unsorted bin中。

进行malloc时,如果在fast bins中没有找到合适的chunk,则ptmalloc会先在unsorted bin中查找合适的空闲chunk,如果unsorted bin不能满足分配要求。malloc便会将unsorted bin中的chunk加入bins中。然后再从bins中继续进行查找和分配过程。从这个过程可以看出来,unsorted bin可以看做是bins的一个缓冲区,增加它只是为了加快分配的速度。

前面的bin中都是回收回来的内存,top chunk才是内存的初始来源,每个arena都有一个top chunk,用来管理Heap的,Heap会在arena第一次分配内存时初始化,会分配一块(chunk_size + 128K) align 4K的空间(132K)作为初始的Heap,top chunk占据整个空间,每次分配会在低地址出切出一片,如下图:

回收时,只有和top chunk相连的内存才能和top chunk合并,才能进而还给系统。

子线程Heap:在main arena中mmap出64M的空间,叫做sub-heap,再在sub-heap上初始化Heap。
主线程的Heap才是真Heap,使用进程Heap,使用brk申请内存。

子线程的heap不够用时,会在申请新的sub-heap,和老的sub-heap单向链表连起来,top chunk会搬到新sub-heap上。

描述mmap出来的内存,单独管理,free时按阈值来决定是否munmap,有动态调整阈值功能,防止太频繁的mmap和munmap。本文不关注。

即最后一次small request中因分割而得到的剩余部分,它有利于改进引用局部性,也即后续对 small chunk 的 malloc 请求可能最终被分配得彼此靠近。
当用户请求 small chunk而无法从small bin和unsorted bin得到时,会在large bin中找最合适的chunk,然后做切割,返回给用户的User chunk,剩下的是Remainder chunk添加到unsorted bin中。这一Remainder chunk就将成为last remainder chunk。

下一块为高地址,前一块为低地址。

Glibc内存管理 华庭(庄明强)

㈦ linux 32位系统支持多大内存

32位linux不打开PAE,则最多只能识别出4GB内存,若打开PAE,则最多可以识别出64GB内存。但是 32位系统下的进程一次最多只能寻址4GB的空间。 64位linux则没有32位系统的限制。因此对于内存大于4GB的机器来说,最好安装64位系统。 简单介绍下如何让redhat 5-32位支持4G以上内存。 步骤1: 安装kernel-PAE.i686 内核包,让系统内核支持PAE物理地址扩展。 rpm-ivh kernel-PAE-2.6.18-53.el5.i686.rpm 安装的时候会报如下警告。 将安装命令由原本的rpm-ivh ****.rpm 改为rpm -ivh ****.rpm –force --nodeps就可以了,nodeps的意思是忽视依赖关系。因为各个软件之间会有或多或少的存在关联,有了这两个设置选项就忽略了这些依赖关系,强制安装。 步骤2: 设置linux系统启动加加载内核,让系统启用PAE的内核 [root@wangdm~ 12:40 #11]# /boot/grub/grub.conf #grub.conf generated by anaconda # #Note that you do not have to rerun grub after making changes to this file #NOTICE: You have a /boot partition. This means that # all kernel and initrd paths arerelative to /boot/, eg. # root (hd0,0) # kernel /vmlinuz-version roroot=/dev/sda3 # initrd /initrd-version.img #boot=/dev/sda default=0 (将default=1修改为default=0就可以了) timeout=5 splashimage=(hd0,0)/grub/splash.xpm.gz hiddenmenu #升级后的系统引导 titleRed Hat Enterprise Linux Server RedHat Enterprise Linux Server (2.6.18-53.el5PAE) root (hd0,0) kernel /vmlinuz-2.6.18-53.el5PAE roroot=LABEL=/ rhgb quiet initrd /initrd-2.6.18-53.el5PAE.img #升级前的系统引导,将其注释掉 #titleRed Hat Enterprise Linux Server (2.6.18-194.el5) # root (hd0,0) # kernel /vmlinuz-2.6.18-194.el5 roroot=LABEL=/ rhgb quiet # initrd /initrd-2.6.18-194.el5.img 保存后重启linux,系统内核就能最大支持64G内存了。 通过查,cat/boot/config-*grep PAE可以查看当前的支持情况如下图显示。

㈧ 详解Linux系统内存知识及调优方案

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。对于整个操作系统来说,内存可能是最麻烦的的设备。而其性能的好坏直接影响着整个操作系统。

我们知道CPU是不能与硬盘打交道的,只有数据被载入到内存中才可以被CPU调用。cpu在访问内存的时候需要先像内存监控程序请求,由监控程序控制和分配内存的读写请求,这个监控程序叫做MMU(内存管理单元)。下面以32位系统来说明内存的访问过程:

32位的系统上每一个进程在访问内存的时候,每一个进程都当做自己有4个G的内存空间可用,这叫虚拟内存(地址),虚拟内存转化成物理内存是通过MMU来完成的。为了能够从线性地址转换成物理地址,需要page table(页表)的内存空间,page table要载入到MMU上。为了完成线性地址到物理地址的映射,如果按照1个字节1个字节映射的话,需要一张非常大的表,这种转换关系会非常的复杂。因此把内存空间又划分成了另外一种存储单元格式,通常为4K。在不同的硬件平台上,它们的大小一般是不一样的,像x86 32位的有4k的页;而64位的有4k页,2M页,4M页,8M页等等,默认都是4k的。每一个进程一般而言都有自己的页路径和页表映射机制,不管那一个页表都是由内核加载的。每一个进程只能看到自己的线性地址空间,想要增加新的内存的时候,只能在自己的线性地址空间中申请,并且申请后一定是通过操作系统的内核映射到物理地址空间中去找那么一段空间,并且告诉线性地址空间准备好了,可以访问,并且在page table中增加一条映射关系,于是就可以访问物理内存了,这种叫做内存分配。但是新的申请一定是通过操作的内核到物理内存中去找那么一段空间,并且告诉线性地址空间好了,可以建设映射关系,最终page table建立映射关系。

这反映了上述描述过程的大体情况。可以看到每一个用户程序都会有自己的页表,并且映射到对应的主存储器上去。

根据上述文字和图表的描述可以发现2个问题:

1.每个进程如果需要访问内存的时候都需要去查找page table的话,势必会造成服务器的性能底下

2.如果主存储器的内存满了以后,应用程序还需要调用内存的时候怎么办

对于第一个问题,我们就需要借助TLB(Translation Lookaside Buffer)翻译后备缓冲器。TLB是一个内存管理单元,它可以用于改进虚拟地址到物理地址转换速度的缓存。这样每次在查找page table的时候就可以先去TLB中查找相应的页表数据,如果有就直接返回,没有再去查找page table,并把查找到的结果缓存中TLB中。TLB虽然解决了缓存的功能,但是在那么page table中查找映射关系仍然很慢,所以又有了page table的分级目录。page table可以分为1级目录,2级目录和偏移量

但是一个进程在运行的时候要频繁的打开文件,关闭文件。这就意味着要频繁的申请内存和释放内存。有些能够在内存中缓存数据的那些进程,他们对内存的分配和回收更多,那么每一次分配都会在页表中建立一个对应项。所以,就算内存的速度很快,大量频繁的同一时间分配和释放内存,依然会降低服务器的整体性能。当然内存空间不够用的时候,我们称为oom(out of memory,内存耗尽)。当内存耗尽的时候,,整个操作系统挂了。这种情况下我们可以考虑交换分区,交换分区毕竟是由硬盘虚拟出来的内存,所以其性能与真正的内存相比,差了很多,所以要尽力避免使用交换分区。有物理内存空间的时候尽量保证全部使用物理内存。cpu无论如何是不能给交换内存打交道的,它也只能给物理内存打交道,能寻址的空间也只能是物理内存。所以当真正物理内存空间不够用的时候,会通过LRU算法把其中最近最少使用的内存放到交换内存中去,这样物理内存中的那段空间就可以供新的程序使用了。但是这样会引发另外的一个问题,即原来的进程通过page table寻找的时候,那一段空间的数据已经不属于它了。所以此刻cpu发送通知或者异常告诉这个程序,这个地址空间已不属于它,这个时候可能会出现2种情况:

1.物理内存有可用的空间可用:这个时候cpu会根据以前的转换策略会把交换分区中的那段内存重新送到物理内存中去,但是转换过来的空间地址不一定会是以前的那一段空间地址,因为以前的那一段空间地址可能已经被别人使用了。

2.物理内存没有可用的空间可用:这个时候依然会使用LRU算发把当前物理地址空间上最近最少使用的空间地址转换到交换内存中去,并把当前进程需要的这断在交换空间中的内存送到物理内存空间中去,并且重新建立映射关系。

上述通知或者异常出现的情况,通常叫做缺页异常。缺页异常也分为大异常和小异常两种。大异常就是访问的数据内存中没有,不的不去硬盘上加载,无论是从交换内存中还是直接从磁盘的某个文件系统上,反正需要从硬盘上去加载,这种异常加载需要很长时间。小异常就是进程之间通过共享内存,第二个进程访问的时候,查看本地的内存映射表没有,但是其它进程已经拥有了这个内存页,所以可以直接映射,这种异常加载需要的时间一般很短。

在操作系统开机的时候,每一个io设备都会像cpu申请一些列的随机端口,这种端口叫做io端口。在IBM PC体系结构中,I/O地址空间一共提供了65,536个8位的I/O端口。正是这些io端口的存在,cpu可以与io设备进行读写交互的过程。在执行读写操作时,CPU使用地址总线选择所请求的I/O端口,使用数据总线在CPU寄存器和端口之间传送数据。I/O端口还可以被映射到物理地址空间:因此,处理器和I/O设备之间的通信就可以直接使用对内存进行操作的汇编语言指令(例如,mov、and、or等等)。现代的硬件设备更倾向于映射I/O,因为这样处理的速度较快,并可以和DMA结合起来使用。这样io在和内存传数据的时候就不需要通过cpu,cpu把总线的控制权交给DMA,每次io传数据的时候就调用DMA一次,就把cpu给解放了出来。当数据传输完了以后,DMA通知给cpu中断一次。DMA在运行的时候对整个总线有控制权限,当cpu发现有其它进程需要使用总线的时候,二者就会产生争用。这个时候,在总线控制权的使用上,CPU和DMA具有相等的权限。只要CPU委托给了DMA,就不能随意的收回这个委托,就要等待DMA的用完。

如果没有其它进程可以运行,或者其它进程运行的时间非常短,这个时候CPU发现我们的IO仍然没有完成,那就意味着,CPU只能等待IO了。CPU在时间分配里面有个iowait的值,就是CPU在等待IO花费的时间。有些是在同步调用过程中,CPU必须要等待IO的完成;否者CPU可以释放IO的传输在背后自动完成,CPU自己去处理其它的事情。等硬盘数据传输完成以后,硬盘只需要像CPU发起一个通知即可。CPU外围有一种设备,这个设备叫做可编程中断控制器。每一个硬件设备为了给CPU通信,在刚开机的时候,在BIOS实现检测的时候,这个设备就要到可编程中断控制器上去注册一个所谓的中断号。那么这个号码就归这个硬件使用了。当前主机上可能有多个硬件,每一个硬件都有自己的号码,CPU在收到中断号以后,就能够通过中断相量表查找到那个硬件设备进行中断。并且就由对应的IO端口过来处理了。

CPU正在运行其它进程,当一个中断请求发过来的时候,CPU会立即终止当前正在处理的进程,而去处理中断。当前CPU挂起当前正在处理的进程,转而去执行中断的过程,也叫做中断切换。只不过,这种切换在量级别上比进程切换要低一些,而且任何中断的优先级通常比任何进程也要高,因为我们指的是硬件中断。中断还分为上半部和下半部,一般而言,上半部就是CPU在处理的时候,把它接进来,放到内存中,如果这个事情不是特别紧急(CPU或者内核会自己判断),因此在这种情况下,CPU回到现场继续执行刚才挂起的进程,当这个进程处理完了,再回过头来执行中断的下半部分。

在32位系统中,我们的内存(线性地址)地址空间中,一般而言,低地址空间有一个G是给内核使用的,上面3个G是给进程使用的。但是应该明白,其实在内核内存当中,再往下,不是直接这样划分的。32位系统和64位系统可能不一样(物理地址),在32位系统中,最低端有那么10多M的空间是给DMA使用的。DNA的总线宽度是很小的,可能只有几位,所以寻址能力很有限,访问的内存空间也就很有限。如果DMA需要复制数据,而且自己能够寻址物理内存,还可以把数据直接壮哉进内存中去,那么就必须保证DMA能够寻址那段内存才行。寻址的前提就是把最低地址断M,DA的寻址范围内的那一段给了DMA。所以站在这个角度来说,我们的内存管理是分区域的。

在32位系统上,16M的内存空间给了ZONE_DMA(DMA使用的物理地址空间);从16M到896M给了ZONE_NORMAL(正常物理地址空间),对于Linux操作系统来说,是内核可以直接访问的地址空间;从896M到1G这断空间叫做"Reserved"(预留的物理地址空间);从1G到4G的这段物理地址空间中,我们的内核是不能直接访问的,要想访问必须把其中的一段内容映射到Reserved来,在Reserved中保留出那一段内存的地址编码,我们内核才能上去访问,所以内核不直接访问大于1G的物理地址空间。所以在32位系统上,它访问内存当中的数据,中间是需要一个额外步骤的。

在64位系统上,ZONE_DAM给了低端的1G地址空间,这个时候DMA的寻址能力被大大加强了;ZONE_DAM32可以使用4G的空间;而大于1G以上给划分了ZONE_NORMAL,这段空间都可以被内核直接访问。所以在64位上,内核访问大于1G的内存地址,就不需要额外的步骤了,效率和性能上也大大增加,这也就是为什么要使用64位系统的原因。

在现在的PC架构上,AMD,INTER都支持一种机制,叫做PEA(物理地址扩展)。所谓PAE。指的是在32位系统的地址总线上,又扩展了4位,使得32位系统上的地址空间可以达到64G。当然在32为系统上,不管你的物理内存有多大,单个进程所使用的空间是无法扩展的。因为在32位的系统上,线性地址空间只有4个G,而单个进程能够识别的访问也只有3个G。

linux的虚拟内存子系统包含了以下几个功能模块:

slab allocator,zoned buddy allocator,MMU,kswapd,bdflush

slab allocator叫做slab分配器

buddy allocator又叫做buddy system,叫做伙伴系统,也是一种内存分配器

buddy system是工作在MMU之上的,而slab allocator又是工作在buddy system之上的。

设置为小于等于1G,在数据库服务器应该劲量避免使用交换内存

3.在应用服务器上,可以设置为RAM*0.5,当然这个是理论值

如果不的不使用交换内存,应该把交换内存放到最靠外的磁道分区上,因为最外边的磁盘的访问速度最快。所以如果有多块硬盘,可以把每块硬盘的最外层的磁道拿一小部分出来作为交换分区。交换分区可以定义优先级,因此把这些硬盘的交换内存的优先级设置为一样,可以实现负载均衡的效果。定义交换分区优先级的方法为编辑/etc/fstab:

/dev/sda1 swap swap pri=5 0 0

/dev/sdb1 swap swap pri=5 0 0

/dev/sdc1 swap swap pri=5 0 0

/dev/sdd1 swap swap pri=5 0 0

四.内存耗尽时候的相关调优参数

当Linux内存耗尽的时候,它会杀死那些占用内存最多的进程,以下三种情况会杀死进程:

1.所有的进程都是活动进程,这个时候想交换出去都没有空闲的进程

2.没有可用的page页在ZONE_NORMAL中

3.有其它新进程启动,申请内存空间的时候,要找一个空闲内存给做映射,但是这个时候找不到了

一旦内存耗尽的时候,操作系统就会启用oom-kill机制。

在/proc/PID/目录下有一个文件叫做oom_score,就是用来指定oom的评分的,就是坏蛋指数。

如果要手动启用oom-kill机制的话,只需要执行echo f>/proc/sysrq-trigger即可,它会自动杀掉我们指定的坏蛋指数评分最高的那个进程

可以通过echo n > /proc/PID/oom_adj来调整一个进程的坏蛋评分指数。最终的评分指数就是2的oom_adj的值的N次方。假如我们的一个进程的oom_adj的值是5,那么它的坏蛋评分指数就是2的5次方。

如果想禁止oom-kill功能的使用可以使用vm.panic_on_oom=1即可。

五.与容量有关的内存调优参数:

overcommit_memory,可用参数有3个,规定是否能够过量使用内存:

0:默认设置,内核执行启发式的过量使用处理

1:内核执行无内存的过量使用处理。使用这个值会增大内存超载的可能性

2:内存的使用量等于swap的大小+RAM*overcommit_ratio的值。如果希望减小内存的过度使用,这个值是最安全的

overcommit_ratio:将overcommit_memory指定为2时候,提供的物理RAM比例,默认为50

六.与通信相关的调优参数

常见在同一个主机中进行进程间通信的方式:

1.通过消息message;2.通过signal信号量进行通信;3.通过共享内存进行通信,跨主机常见的通信方式是rpc

以消息的方式实现进程通信的调优方案:

msgmax:以字节为单位规定消息队列中任意消息的最大允许大小。这个值一定不能超过该队列的大小(msgmnb),默认值为65536

msgmnb:以字节为单位规定单一消息队列的最大值(最大长度)。默认为65536字节

msgmni:规定消息队列识别符的最大数量(及队列的最大数量)。64位架构机器的默认值为1985;32位架构机器的默认值为1736

以共享内存方式实现进程通信的调优方案:

shmall:以字节为单位规定一次在该系统中可以使用的共享内存总量(单次申请的上限)

shmmax:以字节为单位规定每一个共享内存片段的最大大小

shmmni:规定系统范围内最大共享内存片段。在64和32位的系统上默认值都是4096

七.与容量相关的文件系统可调优参数:

file-max:列出内核分配的文件句柄的最大值

dirty_ratio:规定百分比值,当脏数据达到系统内存总数的这个百分比值后开始执行pdflush,默认为20

dirty_background_ratio:规定百分比值,当某一个进程自己所占用的脏页比例达到系统内存总数的这个百分比值后开始在后台执行pdflush,默认为10

dirty_expire_centisecs:pdlush每隔百分之一秒的时间开启起来刷新脏页,默认值为3000,所以每隔30秒起来开始刷新脏页

dirty_writeback_centisecs:每隔百分之一秒开始刷新单个脏页。默认值为500,所以一个脏页的存在时间达到了5秒,就开始刷新脏

八.linux内存常用的观察指标命令:

Memory activity

vmstat [interval] [count]

sar -r [interval] [count]

Rate of change in memory

sar -R [interval] [count]

frmpg/s:每秒释放或者分配的内存页,如果为正数,则为释放的内存页;如果为负数,则为分配的内存页

bufpg/s:每秒buffer中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

campg/s:每秒cache中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

Swap activity

sar -W [interval] [count]

ALL IO

sar -B [interval] [count]

pgpgin/s:每秒从磁盘写入到内核的块数量

pgpgout/s:每秒从内核写入到磁盘的块数量

fault/s:每秒钟出现的缺页异常的个数

majflt/s:每秒钟出现的大页异常的个数

pgfree/s:每秒回收回来的页面个数

㈨ 我想给电脑装个LINUX系统,电脑需要什么样的配置。LINUX最大支持多大内存。

linux对系统要求很低的,就算是十年前的配置都可以装。这点可以放心。
32位的Linux的内存最大支持到4GB,64位的Linux的最大支持内存在EB级别上。实际上最大支持多大的内容跟操作系统的种类无关,而是跟操作系统是32位还是64位有关。
32位的Linux和32位的Windows支持的最大内存是4GB,2的32次方字节=4294967296字节
64位的Linux和Windows支持的最大内存=16EB,2的64次方字节=18446744073709551616字节
就是说你安装64位的系统现在来说可以随便你装多大的内存都没问题

㈩ 如何调高linux单进程使用的内存上限

修改/etc/security/limits.conf可以调整进程内存上限, 具体看 man limits.conf
但是我觉得你的问题可能在于java
一个是java版本,我估计32位版本可能只能用4GB,若是64位的版本就不会
另一个是 java 参数 -Xmx 你先看看现在的设置然后尝试调高,看看是否有效

阅读全文

与linux进程内存最大内存相关的资料

热点内容
自动解压失败叫我联系客服 浏览:482
易语言新手源码 浏览:456
oa服务器必须有固定ip地址 浏览:42
传奇源码分析是什么 浏览:267
解放压缩机支架 浏览:255
程序员秃顶搞笑相遇 浏览:6
IBM手机app商店叫什么名字 浏览:834
jpeg压缩质量 浏览:774
云服务器评测对比 浏览:145
java日期转string 浏览:221
openfire源码编译 浏览:897
在线小工具箱引流网站源码 浏览:337
非科班程序员自学 浏览:801
压缩泡沫鞋底底材 浏览:219
程序员职场第一课2正确的沟通 浏览:679
遇到不合法app应该怎么办 浏览:91
汇编程序编译后的文件 浏览:80
大智慧均线源码 浏览:374
单片机排阻的作用 浏览:216
滴滴金融app被下架如何还款 浏览:212