A. 用51单片机做精确温度控制可行吗
精确与否取决于温度传感器的精度和灵敏度,单片机本身肯定是可以的。
B. 51单片机测温度,速度通过串口发送【求方法】
解决方法很多!一下程序是51单片机的程序。P0口是八段数码管,wela、la分别是数码管位选和段选。DS18S20接在P2^2口。
//安装目录下的EXE文件打开后可在电脑上显示当前温度值
#include
#defineucharunsignedchar
#defineuintunsignedint
sbitDS=P2^2;//defineinterfaceofDS18B20
sbitla=P2^6;
sbitwela=P2^7;
uintpre_temp=0;//储存当前温度值,以减少串口工作频率
unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,<br>0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};
unsignedcharcodetable1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,<br>0x87,0xff,0xef};
voiddelay(uintcount)//delay
{
uinti;
while(count)
{
i=200;
while(i>0)
i--;
count--;
}
}
///////功能:串口初始化,波特率9600,方式1///////
voidInit_Com(void)
{
TMOD=0x20;
PCON=0x00;
SCON=0x50;
TH1=0xFd;
TL1=0xFd;
TR1=1;
}
voiddsreset(void)//复位,初始化函数
{
uinti;
DS=0;
i=103;
while(i>0)i--;
DS=1;
i=4;
while(i>0)i--;
}
bittmpreadbit(void)//readabit读1位数据函数
{
uinti;
bitdat;
DS=0;i++;//i++fordelay
DS=1;i++;i++;
dat=DS;
i=8;while(i>0)i--;
return(dat);
}
uchartmpread(void)//readabytedate读1字节函数
{
uchari,j,dat;
dat=0;
for(i=1;i>1);//读出的数据最低位在最前面,这样刚好一个字节在DAT里
}
return(dat);
}
voidtmpwritebyte(uchardat)//writeabytetods18b20向1820写一个字节数据函数
{
uinti;
ucharj;
bittestb;
for(j=1;j>1;
if(testb)//write1
{
DS=0;
i++;i++;
DS=1;
i=8;while(i>0)i--;
}
else
{
DS=0;//write0
i=8;while(i>0)i--;
DS=1;
i++;i++;
}
}
}
voidtmpchange(void)//DS18B20beginchange开始获取数据并转换
{
dsreset();
delay(1);
tmpwritebyte(0xcc);//addressalldriversonbus写跳过读ROM指令
tmpwritebyte(0x44);//写温度转换指令
}
uinttmp()//getthetemperature读取寄存器中存储的温度数据
{
floattt;
uchara,b;
uinttemp;//variableoftemperature
dsreset();
delay(1);
tmpwritebyte(0xcc);
tmpwritebyte(0xbe);
a=tmpread();//读低8位
b=tmpread();//读高8位
temp=b;
temp0;a--)
{
display(tmp());
}
}while(1);
}
C. 51单片机测温度,速度通过串口发送【求方法】
一下程序是51单片机的程序。P0口是八段数码管,wela、la分别是数码管位选和段选。 DS18S20接在P2^2口。
//安装目录下的EXE文件打开后可在电脑上显示当前温度值
#include <reg52.h>
#define uchar unsigned char
#define uint unsigned int
sbit DS=P2^2; //define interface of DS18B20
sbit la=P2^6;
sbit wela=P2^7;
uint pre_temp=0; //储存当前温度值,以减少串口工作频率
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,
0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};
unsigned char code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,
0x87,0xff,0xef};
void delay(uint count) //delay
{
uint i;
while(count)
{
i=200;
while(i>0)
i--;
count--;
}
}
///////功能:串口初始化,波特率9600,方式1///////
void Init_Com(void)
{
TMOD = 0x20;
PCON = 0x00;
SCON = 0x50;
TH1 = 0xFd;
TL1 = 0xFd;
TR1 = 1;
}
void dsreset(void) //send reset and initialization command 18B20复位,初始化函数
{
uint i;
DS=0;
i=103;
while(i>0)i--;
DS=1;
i=4;
while(i>0)i--;
}
bit tmpreadbit(void) //read a bit 读1位数据函数
{
uint i;
bit dat;
DS=0;i++; //i++ for delay
DS=1;i++;i++;
dat=DS;
i=8;while(i>0)i--;
return (dat);
}
uchar tmpread(void) //read a byte date 读1字节函数
{
uchar i,j,dat;
dat=0;
for(i=1;i<=8;i++)
{
j=tmpreadbit();
dat=(j<<7)|(dat>>1); //读出的数据最低位在最前面,这样刚好一个字节在DAT里
}
return(dat);
}
void tmpwritebyte(uchar dat) //write a byte to ds18b20 向1820写一个字节数据函数
{
uint i;
uchar j;
bit testb;
for(j=1;j<=8;j++)
{
testb=dat&0x01;
dat=dat>>1;
if(testb) //write 1
{
DS=0;
i++;i++;
DS=1;
i=8;while(i>0)i--;
}
else
{
DS=0; //write 0
i=8;while(i>0)i--;
DS=1;
i++;i++;
}
}
}
void tmpchange(void) //DS18B20 begin change 开始获取数据并转换
{
dsreset();
delay(1);
tmpwritebyte(0xcc); // address all drivers on bus 写跳过读ROM指令
tmpwritebyte(0x44); // initiates a single temperature conversion 写温度转换指令
}
uint tmp() //get the temperature 读取寄存器中存储的温度数据
{
float tt;
uchar a,b;
uint temp; // variable of temperature
dsreset();
delay(1);
tmpwritebyte(0xcc);
tmpwritebyte(0xbe);
a=tmpread(); //读低8位
b=tmpread(); //读高8位
temp=b;
temp<<=8; //two byte compose a int variable 两个字节组合为1个字
temp=temp|a;
tt=temp*0.0625; //温度在寄存器中是12位,分辨率是0.0625
temp=tt*10+0.5; //乘10表示小数点后只取1位,加0.5是四折五入
return temp;
}
// 读 DS18B20 的rom,本程序没有调用该函数,保留以保证程序的完整性
// void readrom() //read the serial
// {
// uchar sn1,sn2;
// dsreset();
// delay(1);
// tmpwritebyte(0x33);
// sn1=tmpread();
// sn2=tmpread();
// }
void display(uint temp) //显示程序
{
uchar A1,A2,A2t,A3,ser;
uchar serial_flag = 0; //每当产生新温度时通过串口进行更新,此为标志位
if ( temp != pre_temp )
{
serial_flag = 1;
pre_temp = temp;
}
A1=temp/100;
A2t=temp%100;
A2=A2t/10;
A3=A2t%10;
la=0;
P0=table[A1]; //显示百位
if ( serial_flag )
{
ser = temp/256; //发送串口数据高位
SBUF = ser;
}
la=1;
la=0;
wela=0;
P0=0x7e;
wela=1;
wela=0;
delay(1);
la=0;
P0=table1[A2]; //显示十位
if ( serial_flag )
{
ser = temp%256; //发送串口数据低位
SBUF = ser;
}
la=1;
la=0;
wela=0;
P0=0x7d;
wela=1;
wela=0;
delay(1);
P0=table[A3]; //显示个位
if ( serial_flag )
{
ser = 0xff; //发送串口同步标志信号,后跟着的高位信号不可能达到此值,除非是在孙悟空在八卦炉里
SBUF = ser;
}
la=1;
la=0;
P0=0x7b;
wela=1;
wela=0;
delay(1);
}
void main()
{
uchar a;
Init_Com();
do
{
tmpchange();
// delay(200);
for(a=10;a>0;a--)
{
display(tmp());
}
}while(1);
}
D. 51单片机温度测量
可以用IN4148,再加三运放电路,单片机AD,显示等,就可以了。
E. 这个51单片机数码管显示温度程序
你把倒数第三行改为
dsxianshi(get_temp());
试试看?你现在这样不会启动18b20采集温度,全局变量temp得不到温度值。
另外,这种用全局变量传值的玩法很不好看,能不用就不要用。
另外2, 全局变量和局部变量或函数参数同名字也不是好玩法。
F. 51单片机测温度,速度通过串口发送【求方法】
方法:
第一:搭建单片机最小系统及供电电源系统;
第二:选择温度传感器及设计温度测试电路,比如DS18B20还是NTC还是PT100,无论哪种,网络上关于这些传感器的帖子及程序不少!
第三:设计速度检测办法,是选择旋转编码器还是什么方式来实现,但是无论哪种,基本输出的都是PWM波形进入单片机外部中断口(INT0或者INT1),然后通过定时1秒范围内,检测到了多少脉冲,这样每一圈发送多少个脉冲,这样就可以知道具体一秒转了多少圈,也就可以计算出来速度了。
第四:关于串口,通过单片机+MAX232通信芯片+DB9接口(也可以使用串口转USB的方式,现在电脑基本没有物理串口了。通过USB来转成串口);设置好通信波特率、数据位、通信格式及停止位后,借助电脑的《串口助手软件》配合来实现即可。
G. 51单片机 测试18b20温度问题!
你的问题描述的貌似挺详细,但说了半天都是你知道的东西,例如:你的开发板是有什么组成的,你换用的小板子又是什么情况,大体来说对于18B20而言,如果你的代码没变而只是更换了这个传感器元件就不会有问题的,如果你的接线真的毫无更改而又属实无法正常工作,建议你在更换一个18B20试试,比如将小板在上的18B20拆下来安装到那个好用的开发板上再试试看。
H. 单片机选型 温度范围:有没有能耐100°高温以上的51单片机
有的。
Atmel有军用型的单片机,在电子市场能买到的,型号AT89C52-MI,这在100度工作绝对没问题。
例如,80C51是通用型单片机,它不是为某种专用途设计的;专用型单片机是针对一类产品甚至某一个产品设计生产的,例如为了满足电子体温计的要求,在片内集成ADC接口等功能的温度测量控制电路。
(8)51单片机温度扩展阅读:
总线型/非总线型这是按单片机是否提供并行总线来区分的。
总线型单片机普遍设置有并行地址总线、 数据总线、控制总线,这些引脚用以扩展并行外围器件都可通过串行口与单片机连接,另外,许多单片机已把所需要的外围器件及外设接口集成一片内,因此在许多情况下可以不要并行扩展总线,大大减省封装成本和芯片体积,这类单片机称为非总线型单片机。
控制型/家电型这是按照单片机大致应用的领域进行区分的。
一般而言,工控型寻址范围大,运算能力强;用于家电的单片机多为专用型,通常是小封装、低价格,外围器件和外设接口集成度高。 显然,上述分类并不是惟一的和严格的。
例如,80C51类单片机既是通用型又是总线型,还可以作工控用。
I. 用51单片机实现温度报警器的程序,要正确的
/*使用举例:数码管
scan()
{
char k;
for(k=0;k<4;k++) //4位LED扫描控制
{
discan=0x00;
Disdata=dis_7[_1820display[k]]; //数据显示
if (k==1){DIN=0;} //小数点显示
discan=scan_con[k]; //位选
_18B20_delay(100);
}
}
main()
_18B20_init();//18B20初始化
while(1)
{
EA=0;//在利用18B20测试温度时,要严格遵循时序,禁止一切中断
_18B20_work(_18B20_read()); //处理温度数据
EA=1;//测试完毕,恢复系统中断
scan(); //显示温度值
}
*/
#include "intrins.h" //_nop_();延时函数用
//*****************//
//以下是DS18B20驱动程序
//*****************//
/**************************************************
** 功能描述: DS18B20驱动程序,使用12M晶体
** DQ占用引脚资源P1^7
****************************************************/sbit DQ=P1^7; //温度输入口unsigned char data temp_data[2]={0x00,0x00}; //读出温度暂放
unsigned char data _1820display[5]={0x00,0x00,0x00,0x00,0x00}; //显示单元数据,共4个数据和一个运算暂用
unsigned int temp;
//**************温度小数部分用查表法***********//
unsigned char code ditab[16]=
{
0x00,0x01,0x01,0x02,
0x03,0x03,0x04,0x04,
0x05,0x06,0x06,0x07,
0x08,0x08,0x09,0x09
};/*****************11us延时函数*************************/
//
void _18B20_delay(unsigned int t)
{
for (;t>0;t--);
}/****************DS18B20复位函数************************/
_18B20_reset(void)
{
char presence=1;
while(presence)
{
while(presence)
{
DQ=1;
_nop_();_nop_();//从高拉倒低
DQ=0;
_18B20_delay(50); //550 us
DQ=1;
_18B20_delay(6); //66 us
presence=DQ; //presence=0 复位成功,继续下一步
}
_18B20_delay(45); //延时500 us
presence=~DQ;
}
DQ=1; //拉高电平
}/****************DS18B20写命令函数************************/
//向1-WIRE 总线上写1个字节
void _18B20_write(unsigned char val)
{
unsigned char i;
for(i=8;i>0;i--)
{
DQ=1;
_nop_();_nop_(); //从高拉倒低
DQ=0;
_nop_();_nop_();_nop_();_nop_(); //5 us
DQ=val&0x01; //最低位移出
_18B20_delay(6); //66 us
val=val/2; //右移1位
}
DQ=1;
_18B20_delay(1);
}/****************DS18B20读1字节函数************************/
//从总线上取1个字节
unsigned char _18B20read_byte(void)
{
unsigned char i;
unsigned char value=0;
for(i=8;i>0;i--)
{
DQ=1;
_nop_();_nop_(); //从高拉倒低
value>>=1;
DQ=0;
_nop_();_nop_();_nop_();_nop_(); //4 us
DQ=1;
_nop_();_nop_();_nop_();_nop_(); //4 us
if(DQ)value|=0x80;
_18B20_delay(6); //66 us
}
DQ=1;
return(value);
}
_18B20_read() //读出温度函数
{
_18B20_reset(); //总线复位
_18B20_delay(200);
_18B20_write(0xcc); //发命令
_18B20_write(0x44); //发转换命令
_18B20_reset();
_18B20_delay(1);
_18B20_write(0xcc); //发命令
_18B20_write(0xbe);
temp_data[0]=_18B20read_byte(); //读温度值的低字节
temp_data[1]=_18B20read_byte(); //读温度值的高字节
temp=temp_data[1];
temp<<=8;
temp=temp|temp_data[0]; // 两字节合成一个整型变量。
return temp; //返回温度值
}/****************温度数据处理函数************************///二进制高字节的低半字节和低字节的高半字节组成一字节,这个
//字节的二进制转换为十进制后,就是温度值的百、十、个位值,而剩
//下的低字节的低半字节转化成十进制后,就是温度值的小数部分/********************************************************/
_18B20_work(unsigned int tem)
{
unsigned char n=0;
if(tem>6348) // 温度值正负判断
{
tem=65536-tem;
n=1;
} // 负温度求补码,标志位置1
_1820display[4]=tem&0x0f; // 取小数部分的值
_1820display[0]=ditab[_1820display[4]]; // 存入小数部分显示值
_1820display[4]=tem>>4; // 取中间八位,即整数部分的值
_1820display[3]=_1820display[4]/100; // 取百位数据暂存
_1820display[1]=_1820display[4]%100; // 取后两位数据暂存
_1820display[2]=_1820display[1]/10; // 取十位数据暂存
_1820display[1]=_1820display[1]%10;
/******************数码管符号位显示判断**************************/
if(!_1820display[3])
{
_1820display[3]=0x0a; //最高位为0时不显示
if(!_1820display[2])
_1820display[2]=0x0a; //次高位为0时不显示
}
if(n)
_1820display[3]=0x0b; //负温度时最高位显示"-"
}
/******************1602液晶符号位显示判断**************************/
if(!_1820display[3])
{
_1820display[3]=' '-'0'; //最高位为0时不显示
if(!_1820display[2])
_1820display[2]=' '-'0'; //次高位为0时不显示
}
if(n)
_1820display[3]='-'-'0'; //负温度时最高位显示"-"
} _18B20_init()//18B20初始化
{
_18B20_reset(); //开机先转换一次
_18B20_write(0xcc); //Skip ROM
_18B20_write(0x44); //发转换命令
}
J. 51单片机温度报警器原理图和程序有吗
这个是自动控制温度的一个例子,温度降低到一定程度就启动加热。
//温度传感器:DS18B20
//显示方式:LED
#include <reg51.h>
#define uchar unsigned char
sbit keyup=P1^0;
sbit keydn=P1^1;
sbit keymd=P1^2;
sbit out=P3^7;//接控制继电器
sbit DQ = P3^4;//接温度传感器18B20
uchar t[2],number=0,*pt;//温度值
uchar TempBuffer1[4]={0,0,0,0};
uchar Tmax=18,Tmin=8;
uchar distab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xff,0xfe,0xf7};
uchar dismod=0,xiaodou1=0,xiaodou2=0,currtemp;
bit flag;
void t0isr() interrupt 1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(number)
{
case 0:
P2=0x08;
P0=distab[TempBuffer1[0]];
break;
case 1:
P2=0x04;
P0=distab[TempBuffer1[1]];
break;
case 2:
P2=0x02;
P0=distab[TempBuffer1[2]]&0x7f;
break;
case 3:
P2=0x01;
P0=distab[TempBuffer1[3]];
break;
default:
break;
}
number++;
if(number>3)number=0;
}
void delay_18B20(unsigned int i)
{
while(i--);
}
/**********ds18b20初始化函数**********************/
void Init_DS18B20(void)
{
bit x=0;
do{
DQ=1;
delay_18B20(8);
DQ = 0; //单片机将DQ拉低
delay_18B20(90); //精确延时 大于 480us
DQ = 1; //拉高总线
delay_18B20(14);
x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败,继续初始化
}while(x);
delay_18B20(20);
}
/***********ds18b20读一个字节**************/
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 给脉冲信号
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(4);
}
return(dat);
}
/*************ds18b20写一个字节****************/
void WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(5);
DQ = 1;
dat>>=1;
}
}
/**************读取ds18b20当前温度************/
unsigned char *ReadTemperature(unsigned char rs)
{
unsigned char tt[2];
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0x44); //启动温度转换
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度
tt[0]=ReadOneChar(); //读取温度值低位
tt[1]=ReadOneChar(); //读取温度值高位
return(tt);
}
void covert1(void)//将温度转换为LED显示的数据
{
uchar x=0x00,y=0x00;
t[0]=*pt;
pt++;
t[1]=*pt;
if(t[1]&0x080) //判断正负温度
{
TempBuffer1[0]=0x0c; //c代表负
t[1]=~t[1]; /*下面几句把负数的补码*/
t[0]=~t[0]; /*换算成绝对值*********/
x=t[0]+1;
t[0]=x;
if(x==0x00)t[1]++;
}
else TempBuffer1[0]=0x0a;//A代表正
t[1]<<=4;//将高字节左移4位
t[1]=t[1]&0xf0;
x=t[0];//将t[0]暂存到X,因为取小数部分还要用到它
x>>=4;//右移4位
x=x&0x0f;//和前面两句就是取出t[0]的高四位
y=t[1]|x;//将高低字节的有效值的整数部分拼成一个字节
TempBuffer1[1]=(y%100)/10;
TempBuffer1[2]=(y%100)%10;
t[0]=t[0]&0x0f;//小数部分
TempBuffer1[3]=t[0]*10/16;
//以下程序段消去随机误检查造成的误判,只有连续12次检测到温度超出限制才切换加热装置
if(currtemp>Tmin)xiaodou1=0;
if(y<Tmin)
{
xiaodou1++;
currtemp=y;
xiaodou2=0;
}
if(xiaodou1>12)
{
out=0;
flag=1;
xiaodou1=0;
}
if(currtemp<Tmax)xiaodou2=0;
if(y>Tmax)
{
xiaodou2++;
currtemp=y;
xiaodou1=0;
}
if(xiaodou2>12)
{
out=1;
flag=0;
xiaodou2=0;
}
out=flag;
}
void convert(char tmp)
{
uchar a;
if(tmp<0)
{
TempBuffer1[0]=0x0c;
a=~tmp+1;
}
else
{
TempBuffer1[0]=0x0a;
a=tmp;
}
TempBuffer1[1]=(a%100)/10;
TempBuffer1[2]=(a%100)%10;
}
void keyscan( )
{
uchar keyin;
keyin=P1&0x07;
if(keyin==0x07)return;
else if(keymd==0)
{
dismod++;
dismod%=3;
while(keymd==0);
switch(dismod)
{
case 1:
convert(Tmax);
TempBuffer1[3]=0x11;
break;
case 2:
convert(Tmin);
TempBuffer1[3]=0x12;
break;
default:
break;
}
}
else if((keyup==0)&&(dismod==1))
{
Tmax++;
convert(Tmax);
while(keyup==0);
}
else if((keydn==0)&&(dismod==1))
{
Tmax--;
convert(Tmax);
while(keydn==0);
}
else if((keyup==0)&&(dismod==2))
{
Tmin++;
convert(Tmin);
while(keyup==0);
}
else if((keydn==0)&&(dismod==2))
{
Tmin--;
convert(Tmin);
while(keydn==0);
}
xiaodou1=0;
xiaodou2=0;
}
main()
{
TMOD=0x01;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
out=1;
flag=0;
ReadTemperature(0x3f);
delay_18B20(50000);//延时等待18B20数据稳定
while(1)
{
pt=ReadTemperature(0x7f); //读取温度,温度值存放在一个两个字节的数组中
if(dismod==0)covert1();
keyscan();
delay_18B20(30000);
}
}