Ⅰ LCD12864的屏总是在闪,我是用51单片机做的,屏带字库,补充里是整个程序,怎么解决谢谢
看了你的程序,问题在while里面。没必要循环初始化你的LCD,将初始化程序放到主函数中。你的显示函数中也已经包含了清屏指令,不需要在while里面再次加入清屏指令。如果一定要用,建议你在所有清屏指令后加入的延时够大。清屏指令过多,延时太少的话,相当于清屏之后又写入,再清屏再写入,你看到的就是闪了。
Ⅱ 美的电磁炉三洋单片机芯片TM-S1-01A-A电磁炉各引脚电压
摘要 你好,很高兴为你解答
Ⅲ 单片机CJNE A, 40H, CHK是什么意思
拍片机上面的这个意思好像是型号不一样,所以的话它的功能按键也是各不相同的。
Ⅳ 用proteus做单片机的仿真实验,引脚黄色,有经验的进
……
CD=1;
P0 = 255; //加上这一句试试
status=P0;
return status;
……
Ⅳ 单片机串口通讯关于停止位的问题
发送字符之间增加1bit的时间延时
停止位1个或2个本质上没有差别,只是时间不同。
停止位长的传输准确率高,只是效率低一些。低多少呢?每增加1个停止位低10%。
Ⅵ 单片机c语言宏定义有几种
宏定义
宏定义是C提供的三种预处理功能的其中一种,这三种预处理包括:宏定义、文件包含、条件编译
编辑本段1.不带参数的宏定义:
宏定义又称为宏代换、宏替换,简称“宏”。
格式:
#define 标识符 字符串
其中的标识符就是所谓的符号常量,也称为“宏名”。
预处理(预编译)工作也叫做宏展开:将宏名替换为字符串。
掌握"宏"概念的关键是“换”。一切以换为前提、做任何事情之前先要换,准确理解之前就要“换”。
即在对相关命令或语句的含义和功能作具体分析之前就要换:
例:
#define PI 3.1415926
把程序中出现的PI全部换成3.1415926
说明:
(1)宏名一般用大写
(2)使用宏可提高程序的通用性和易读性,减少不一致性,减少输入错误和便于修改。例如:数组大小常用宏定义
(3)预处理是在编译之前的处理,而编译工作的任务之一就是语法检查,预处理不做语法检查。
(4)宏定义末尾不加分号;
(5)宏定义写在函数的花括号外边,作用域为其后的程序,通常在文件的最开头。
(6)可以用#undef命令终止宏定义的作用域
(7)宏定义可以嵌套
(8)字符串" "中永远不包含宏
(9)宏定义不分配内存,变量定义分配内存。
编辑本段2.带参数的宏定义:
除了一般的字符串替换,还要做参数代换
格式:
#define 宏名(参数表) 字符串
例如:#define S(a,b) a*b
area=S(3,2);第一步被换为area=a*b; ,第二步被换为area=3*2;
类似于函数调用,有一个哑实结合的过程:
(1)实参如果是表达式容易出问题
#define S(r) r*r
area=S(a+b);第一步换为area=r*r;,第二步被换为area=a+b*a+b;
正确的宏定义是#define S(r) ((r)*(r))
(2)宏名和参数的括号间不能有空格
(3)宏替换只作替换,不做计算,不做表达式求解
(4)函数调用在编译后程序运行时进行,并且分配内存。宏替换在编译前进行,不分配内存
(5)宏的哑实结合不存在类型,也没有类型转换。
(6)函数只有一个返回值,利用宏则可以设法得到多个值
(7)宏展开使源程序变长,函数调用不会
(8)宏展开不占运行时间,只占编译时间,函数调用占运行时间(分配内存、保留现场、值传递、返回值
C语言宏定义技巧(常用宏定义)
写好C语言,漂亮的宏定义很重要,使用宏定义可以防止出错,提高可移植性,可读性,方便性 等等。
下面列举一些成熟软件中常用得宏定义:
1,防止一个头文件被重复包含
#ifndef COMDEF_H
#define COMDEF_H
//头文件内容
#endif
2,重新定义一些类型,防止由于各种平台和编译器的不同,而产生的类型字节数差异,方便移植。
typedef unsigned char boolean; /* Boolean value type. */
typedef unsigned long int uint32; /* Unsigned 32 bit value */
typedef unsigned short uint16; /* Unsigned 16 bit value */
typedef unsigned char uint8; /* Unsigned 8 bit value */
typedef signed long int int32; /* Signed 32 bit value */
typedef signed short int16; /* Signed 16 bit value */
typedef signed char int8; /* Signed 8 bit value */
3,得到指定地址上的一个字节或字
#define MEM_B( x ) ( *( (byte *) (x) ) )
#define MEM_W( x ) ( *( (word *) (x) ) )
4,求最大值和最小值
#define MAX( x, y ) ( ((x) > (y)) ? (x) : (y) )
#define MIN( x, y ) ( ((x) < (y)) ? (x) : (y) )
5,得到一个field在结构体(struct)中的偏移量
#define FPOS( type, field ) \
/*lint -e545 */ ( (dword) &(( type *) 0)-> field ) /*lint +e545 */
6,得到一个结构体中field所占用的字节数
#define FSIZ( type, field ) sizeof( ((type *) 0)->field )
7,按照LSB格式把两个字节转化为一个Word
#define FLIPW( ray ) ( (((word) (ray)[0]) * 256) + (ray)[1] )
8,按照LSB格式把一个Word转化为两个字节
#define FLOPW( ray, val ) \
(ray)[0] = ((val) / 256); \
(ray)[1] = ((val) & 0xFF)
9,得到一个变量的地址(word宽度)
#define B_PTR( var ) ( (byte *) (void *) &(var) )
#define W_PTR( var ) ( (word *) (void *) &(var) )
10,得到一个字的高位和低位字节
#define WORD_LO(xxx) ((byte) ((word)(xxx) & 255))
#define WORD_HI(xxx) ((byte) ((word)(xxx) >> 8))
11,返回一个比X大的最接近的8的倍数
#define RND8( x ) ((((x) + 7) / 8 ) * 8 )
12,将一个字母转换为大写
#define UPCASE( c ) ( ((c) >= 'a' && (c) <= 'z') ? ((c) - 0x20) : (c) )
13,判断字符是不是10进值的数字
#define DECCHK( c ) ((c) >= '0' && (c) <= '9')
14,判断字符是不是16进值的数字
#define HEXCHK( c ) ( ((c) >= '0' && (c) <= '9') ||\
((c) >= 'A' && (c) <= 'F') ||\
((c) >= 'a' && (c) <= 'f') )
15,防止溢出的一个方法
#define INC_SAT( val ) (val = ((val)+1 > (val)) ? (val)+1 : (val))
16,返回数组元素的个数
#define ARR_SIZE( a ) ( sizeof( (a) ) / sizeof( (a[0]) ) )
17,返回一个无符号数n尾的值MOD_BY_Power_OF_TWO(X,n)=X%(2^n)
#define MOD_BY_POWER_OF_TWO( val, mod_by ) \
( (dword)(val) & (dword)((mod_by)-1) )
18,对于IO空间映射在存储空间的结构,输入输出处理
#define inp(port) (*((volatile byte *) (port)))
#define inpw(port) (*((volatile word *) (port)))
#define inpdw(port) (*((volatile dword *)(port)))
#define outp(port, val) (*((volatile byte *) (port)) = ((byte) (val)))
#define outpw(port, val) (*((volatile word *) (port)) = ((word) (val)))
#define outpdw(port, val) (*((volatile dword *) (port)) = ((dword) (val)))
[2005-9-9添加]
19,使用一些宏跟踪调试
A N S I标准说明了五个预定义的宏名。它们是:
_ L I N E _
_ F I L E _
_ D A T E _
_ T I M E _
_ S T D C _
如果编译不是标准的,则可能仅支持以上宏名中的几个,或根本不支持。记住编译程序
也许还提供其它预定义的宏名。
_ L I N E _及_ F I L E _宏指令在有关# l i n e的部分中已讨论,这里讨论其余的宏名。
_ D AT E _宏指令含有形式为月/日/年的串,表示源文件被翻译到代码时的日期。
源代码翻译到目标代码的时间作为串包含在_ T I M E _中。串形式为时:分:秒。
如果实现是标准的,则宏_ S T D C _含有十进制常量1。如果它含有任何其它数,则实现是
非标准的。
可以定义宏,例如:
当定义了_DEBUG,输出数据信息和所在文件所在行
#ifdef _DEBUG
#define DEBUGMSG(msg,date) printf(msg);printf(“%d%d%d”,date,_LINE_,_FILE_)
#else
#define DEBUGMSG(msg,date)
#endif
20,宏定义防止使用是错误
用小括号包含。
例如:#define ADD(a,b) (a+b)
用do{}while(0)语句包含多语句防止错误
例如:#difne DO(a,b) a+b;\
a++;
应用时:if(….)
DO(a,b); //产生错误
else
解决方法: #difne DO(a,b) do{a+b;\
a++;}while(0)
宏中"#"和"##"的用法
一、一般用法
我们使用#把宏参数变为一个字符串,用##把两个宏参数贴合在一起.
用法:
#include<cstdio>
#include<climits>
using namespace std;
#define STR(s) #s
#define CONS(a,b) int(a##e##b)
int main()
{
printf(STR(vck)); // 输出字符串"vck"
printf("%d
", CONS(2,3)); // 2e3 输出:2000
return 0;
}
Ⅶ 奔腾chk v9.04h 主板1.0A与1.5A有何区别
每个品牌使用的芯片(单片机)厂家是不一样的,程序也是不一样的。
2007年以前的电磁炉主要采用20脚单片机+393和339(后两者是标准逻辑器件),
2008年后的逻辑器件被各单片机集成了,变成了单芯片单片机,脚位数基本也是20脚
2013年以后,电磁炉经过十几年的发展已经更新好几代了,电路更成熟,已经变成了16或者18脚的主控单片机。
所以具体你要说是哪个品牌的电磁炉,我可以帮你再查查。你很幸运,我是单片机代理。专业从事小家电和电磁炉的开发和代理。尤其是大功率商用电磁炉,我可是行家。
Ⅷ 单片机中所说的通信协议是什么
单片机通信协议
现在大部分的仪器设备都要求能过通过上位机软件来操作,这样方便调试,利于操作。其中就涉及到通信的过程。在实际制作的几个设备中,笔者总结出了通信程序的通用写法,包括上位机端和下位机端等。
1.自定义数据通信协议
这里所说的数据协议是建立在物理层之上的通信数据包格式。所谓通信的物理层就是指我们通常所用到的RS232、RS485、红外、光纤、无线等等通信方式。在这个层面上,底层软件提供两个基本的操作函数:发送一个字节数据、接收一个字节数据。所有的数据协议全部建立在这两个操作方法之上。
通信中的数据往往以数据包的形式进行传送的,我们把这样的一个数据包称作为一帧数据。类似于网络通信中的TCPIP协议一般,比较可靠的通信协议往往包含有以下几个组成部分:帧头、地址信息、数据类型、数据长度、数据块、校验码、帧尾。
帧头和帧尾用于数据包完整性的判别,通常选择一定长度的固定字节组成,要求是在整个数据链中判别数据包的误码率越低越好。减小固定字节数据的匹配机会,也就是说使帧头和帧尾的特征字节在整个数据链中能够匹配的机会最小。通常有两种做法,一、减小特征字节的匹配几率。二、增加特征字节的长度。通常选取第一种方法的情况是整个数据链路中的数据不具有随即性,数据可预测,可以通过人为选择帧头和帧尾的特征字来避开,从而减小特征字节的匹配几率。使用第二种方法的情况更加通用,适合于数据随即的场合。通过增加特征字节的长度减小匹配几率,虽然不能够完全的避免匹配的情况,但可以使匹配几率大大减小,如果碰到匹配的情况也可以由校验码来进行检测,因此这种情况在绝大多说情况下比较可靠。
地址信息主要用于多机通信中,通过地址信息的不同来识别不同的通信终端。在一对多的通信系统中,可以只包含目的地址信息。同时包含源地址和目的地址则适用于多对多的通信系统。
数据类型、数据长度和数据块是主要的数据部分。数据类型可以标识后面紧接着的是命令还是数据。数据长度用于指示有效数据的个数。
校验码则用来检验数据的完整性和正确性。通常对数据类型、数据长度和数据块三个部分进行相关的运算得到。最简单的做法可是对数据段作累加和,复杂的也可以对数据进行CRC运算等等,可以根据运算速度、容错度等要求来选取。
2.上位机和下位机中的数据发送
物理通信层中提供了两个基本的操作函数,发送一个字节数据则为数据发送的基础。数据包的发送即把数据包中的左右字节按照顺序一个一个的发送数据而已。当然发送的方法也有不同。
在单片机系统中,比较常用的方法是直接调用串口发送单个字节数据的函数。这种方法的缺点是需要处理器在发送过程中全程参与,优点是所要发送的数据能够立即的出现在通信线路上,能够立即被接收端接收到。另外一种方法是采用中断发送的方式,所有需要发送的数据被送入一个缓冲区,利用发送中断将缓冲区中的数据发送出去。这种方法的优点是占用处理器资源小,但是可能出现需要发送的数据不能立即被发送的情况,不过这种时延相当的小。对于51系列单片机,比较倾向于采用直接发送的方式,采用中断发送的方式比较占用RAM资源,而且对比直接发送来说也没有太多的优点。以下是51系列单片机中发送单个字节的函数。
void SendByte(unsigned char ch)
{
SBUF = ch;
while(TI == 0);
TI = 0;
}
上位机中关于串口通信的方式也有多种,这种方式不是指数据有没有缓冲的问题,而是操作串口的方式不同,因为PC上数据发送基本上都会被缓冲后再发送。对于编程来说操作串口有三种方式,一、使用windows系统中自带的串口通信控件,这种方式使用起来比较简单,需要注意的是接收时的阻塞处理和线程机制。二、使用系统的API直接进行串口数据的读取,在windows和linux系统中,设备被虚拟为文件,只需要利用系统提供的API函数即可进行串口数据的发送和读取。三、使用串口类进行串口操作。在此只介绍windows环境下利用串口类编程的方式。
CSerialPort是比较好用的串口类。它提供如下的串口操作方法:
void WriteToPort(char* string, int len);
串口初始化成功后,调用此函数即可向串口发送数据。为了避免串口缓冲所带来的延时,可以开启串口的冲刷机制。
3.下位机中的数据接收和协议解析
下位机接收数据也有两种方式,一、等待接收,处理器一直查询串口状态,来判断是否接收到数据。二、中断接收。两种方法的优缺点在此前的一篇关于串口通信的文章中详细讨论过。得出的结论是采用中断接收的方法比较好。
数据包的解析过程可以设置到不同的位置。如果协议比较简单,整个系统只是处理一些简单的命令,那么可以直接把数据包的解析过程放入到中断处理函数中,当收到正确的数据包的时候,置位相应的标志,在主程序中再对命令进行处理。如果协议稍微复杂,比较好的方式是将接收的数据存放于缓冲区中,主程序读取数据后进行解析。也有两种方式交叉使用的,比如一对多的系统中,首先在接收中断中解析“连接”命令,连接命令接收到后主程序进入设置状态,采用查询的方式来解析其余的协议。
以下给出具体的实例。在这个系统中,串口的命令非常简单。所有的协议全部在串口中断中进行。数据包的格式如下:
0x55, 0xAA, 0x7E, 0x12, 0xF0, 0x02, 0x23, 0x45, SUM, XOR, 0x0D
其中0x55, 0xAA, 0x7E为数据帧的帧头,0x0D为帧尾,0x12为设备的目的地址,0xF0为源地址,0x02为数据长度,后面接着两个数据0x23, 0x45,从目的地址开始结算累加、异或校验和,到数据的最后一位结束。
协议解析的目的,首先判断数据包的完整性,正确性,然后提取数据类型,数据等数据,存放起来用于主程序处理。代码如下:
if(state_machine == 0) // 协议解析状态机
{
if(rcvdat == 0x55) // 接收到帧头第一个数据
state_machine = 1;
else
state_machine = 0; // 状态机复位
}
else if(state_machine == 1)
{
if(rcvdat == 0xAA) // 接收到帧头第二个数据
state_machine = 2;
else
state_machine = 0; // 状态机复位
}
else if(state_machine == 2)
{
if(rcvdat == 0x7E) // 接收到帧头第三个数据
state_machine = 3;
else
state_machine = 0; // 状态机复位
}
else if(state_machine == 3)
{
sumchkm = rcvdat; // 开始计算累加、异或校验和
xorchkm = rcvdat;
if(rcvdat == m_SrcAdr) // 判断目的地址是否正确
state_machine = 4;
else
state_machine = 0;
}
else if(state_machine == 4)
{
sumchkm += rcvdat;
xorchkm ^= rcvdat;
if(rcvdat == m_DstAdr) // 判断源地址是否正确
state_machine = 5;
else
state_machine = 0;
}
else if(state_machine == 5)
{
lencnt = 0; // 接收数据计数器
rcvcount = rcvdat; // 接收数据长度
sumchkm += rcvdat;
xorchkm ^= rcvdat;
state_machine = 6;
}
else if(state _machine == 6 || state _machine == 7)
{
m_ucData[lencnt++] = rcvdat; // 数据保存
sumchkm += rcvdat;
xorchkm ^= rcvdat;
if(lencnt == rcvcount) // 判断数据是否接收完毕
state_machine = 8;
else
state_machine = 7;
}
else if(state_machine == 8)
{
if(sumchkm == rcvdat) // 判断累加和是否相等
state_machine = 9;
else
state_machine = 0;
}
else if(state_machine == 9)
{
if(xorchkm == rcvdat) // 判断异或校验和是否相等
state_machine = 10;
else
state_machine = 0;
}
else if(state_machine == 10)
{
if(0x0D == rcvdat) // 判断是否接收到帧尾结束符
{
retval = 0xaa; // 置标志,表示一个数据包接收到
}
state_machine = 0; // 复位状态机
}
此过程中,使用了一个变量state_machine作为协议状态机的转换状态,用于确定当前字节处于一帧数据中的那个部位,同时在接收过程中自动对接收数据进行校验和处理,在数据包接收完的同时也进行了校验的比较。因此当帧尾结束符接收到的时候,则表示一帧数据已经接收完毕,并且通过了校验,关键数据也保存到了缓冲去中。主程序即可通过retval的标志位来进行协议的解析处理。
接收过程中,只要哪一步收到的数据不是预期值,则直接将状态机复位,用于下一帧数据的判断,因此系统出现状态死锁的情况非常少,系统比较稳定,如果出现丢失数据包的情况也可由上位机进行命令的补发,不过这种情况笔者还没有碰到。
对于主程序中进行协议处理的过程与此类似,主程序循环中不断的读取串口缓冲区的数据,此数据即参与到主循环中的协议处理过程中,代码与上面所述完全一样。
4.上位机中的数据接收和命令处理
上位机中数据接收的过程与下位机可以做到完全一致,不过针对不同的串口操作方法有所不同。对于阻赛式的串口读函数,例如直接进行API操作或者调用windows的串口通信控件,最好能够开启一个线程专门用于监视串口的数据接收,每接收到一个数据可以向系统发送一个消息。笔者常用的CSerialPort类中就是这样的处理过程。CSerialPort打开串口后开启线程监视串口的数据接收,将接收的数据保存到缓冲区,并向父进程发送接收数据的消息,数据将随消息一起发送到父进程。父进程中开启此消息的处理函数,从中获取串口数据后就可以把以上的代码拷贝过来使用。
CSerialPort向父类发送的消息号如下:
#define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer.
因此需要手动添加此消息的响应函数:
afx_msg LONG OnCommunication(WPARAM ch, LPARAM port);
ON_MESSAGE(WM_COMM_RXCHAR, OnCommunication)
响应函数的具体代码如下:
LONG CWellInfoView::OnCommunication(WPARAM ch, LPARAM port)
{
int retval = 0;
rcvdat = (BYTE)ch;
if(state_machine == 0) // 协议解析状态机
{
if(rcvdat == 0x55) // 接收到帧头第一个数据
state_machine = 1;
else
state_machine = 0; // 状态机复位
}
else if(state_machine == 1)
{
if(rcvdat == 0xAA) // 接收到帧头第二个数据
state_machine = 2;
else
state_machine = 0; // 状态机复位
......
5.总结
以上给出的是通信系统运作的基本雏形,虽然简单,但是可行。实际的通信系统中协议比这个要复杂,而且涉及到数据包响应、命令错误、延时等等一系列的问题,在这样的一个基础上可以克服这些困难并且实现出较为稳定可靠的系统
Ⅸ 单片机怎样用一个键控制一个io口的高低电位
这个很简单,比如:
KEY EQU P1.0
CHK_IO EQU P1.4
KEYCIO:
JB KEY,$ ;键按下
JNB KEY,$ ;等键抬起
CPL CHK_IO ;IO口取反
RET
Ⅹ 80C51单片机的STB端口和CHK端口是指哪一个啊
STB和CHK是信号状态,你可以向两个单片机的接口发送这些信号,然后通过中断处理程序进行操作的