❶ 用单片机控制步进电机驱动器怎么接线
公共正端------->单片机5V脉冲信号------->串个小电阻再接到单片机输出脉冲引脚方向信号------->串个小电阻下接到单片机输出方向引脚有上面3根线就可以控制步进电机的走动了,一上电时,电机是自动锁定的,如果还需要控制步进电机锁定和放开,那还要再接一根电机释放信号,接法同脉冲信号
❷ 单片机控制步进电机的原理
步进电机控制原理
步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。其基本原理作用如下:
(1)控制换相顺序
通电换相这一过程称为脉冲分配。例如:三相步进电机的三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。
(2)控制步进电机的转向
如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
(3)控制步进电机的速度
如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。
步进电机是一种可以把脉冲激励的变化转换成精确转子位置增量运动的执行机构,它可将脉冲信号变成电机相应角位移的机械量,从而通过控制脉冲的个数来控制电机转动的时间,并通过改变脉冲的频率控制电机运转的速度。
❸ 用单片机控制两台步进电机能做到吗
可以做到啊,你所说的一样速度,指的是角速度还是线速度?所说的两台电机,是已经在水平方向和30°方向了还是需要一个运动到30°方向?角速度比较好办,一个脉冲同时驱动两个电机转动就是了,如果是线速度,在机械上做下调整最省事,不过也可以调整两个电机的转动速度,这个主要在程序上调整就好了。
❹ 如何使用单片机精确控制步进电机
如何用单片机控制步进电机
步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
一、步进电机常识
常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛。
二、永磁式步进电机的控制
下面以电子爱好者业余制作中常用的永磁式步进电机为例,来介绍如何用单片机控制步进电机。图1是35BY型永磁步进电机的外形图,图2是该电机的接线图,从图中可以看出,电机共有四组线圈,四组线圈的一个端点连在一起引出,这样一共有5根引出线。要使用步进电机转动,只要轮流给各引出端通电即可。将COM端标识为C,只要AC、C、BC、C,轮流加电就能驱动步进电机运转,加电的方式可以有多种,如果将COM端接正电源,那么只要用开关元件(如三极管),将A、B、轮流接地。列出了该电机的一些典型参数:表135BY48S03型步机电机参数型号步距角相数电压电流电阻最大静转距定位转距转动惯量35BY48S03 7.5 4 12 0.26 47 180 65 2.5 有了这些参数,不难设计出控制电路,因其工作电压为12V,最大电流为0.26A,因此用一块开路输出达林顿驱动器(ULN2003)来作为驱动,通过P1.4~P1.7来控制各线圈的接通与切断。开机时,P1.4~P1.7均为高电平,依次将P1.4~P1.7切换为低电平即可驱动步进电机运行,注意在切换之前将前一个输出引脚变为高电平。如果要改变电机的转动速度只要改变两次接通之间的时间,而要改变电机的转动方向,只要改变各线圈接通的顺序。
❺ 一个51单片机同时控制2个步进电机的C语言程序
#include<reg52.h>
#include<intrins.h>
#define mode 0x81 // 方式0,A口、B口输出,C口高4位输出,低4位输入
# include "stdio.h"
# include "string.h"
# include "math.h"
xdata unsigned char PA _at_ 0x7f00;
xdata unsigned char PB _at_ 0x7f01;
xdata unsigned char PC _at_ 0x7f02;
xdata unsigned char caas _at_ 0x7f03; //控制字
sbit P32=P3^2;
sbit P33=P3^3;
sbit P35=P3^5;
#define uchar unsigned char
#define uint unsigned int
unsigned char h,Pos ;
unsigned int R,NX,NY;
unsigned char key;
code unsigned char KeyTable[] = { // 键码定义
0x0f, 0x0b, 0x07, 0x03,
0x0e, 0x0a, 0x06, 0x02,
0x0d, 0x09, 0x05, 0x01,
0x0c, 0x08, 0x04, 0x00
};
code unsigned char LEDMAP[] = { // 八段管显示码
0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,
0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71
};
unsigned char Code_ ; // 字符代码寄存器
#define PD1 61 // 122/2 分成左右两半屏(122x32)
unsigned char Column;
unsigned char Page_ ; // 页地址寄存器 D1,DO:页地址
unsigned char Code_ ; // 字符代码寄存器
unsigned char Command; // 指令寄存器
unsigned char LCDData; // 数据寄存器
xdata unsigned char CWADD1 _at_ 0x1cff; // 写指令代码地址(E1)
xdata unsigned char DWADD1 _at_ 0x1eff; // 写显示数据地址(E1)
xdata unsigned char CRADD1 _at_ 0x1dff; // 读状态字地址(E1)
xdata unsigned char DRADD1 _at_ 0x1fff; // 读显示数据地址(E1)
xdata unsigned char CWADD2 _at_ 0x3cff; // 写指令代码地址(E2)
xdata unsigned char DWADD2 _at_ 0x3eff; // 写显示数进地址(E2)
xdata unsigned char CRADD2 _at_ 0x3dff; // 读状态字地址(E2)
xdata unsigned char DRADD2 _at_ 0x3fff; // 读显示数据地址(E2)
//----------------------液晶-----------------
// 清屏
// ************************ 中文显示程序 ***********************************/
/*************************直线 插 补***************************8*/
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=50;y>0;y--);
}
void zhengx()
{
PA=0x00;
delay(10);
PA=0x01;
delay(10);
}
void fux()
{
PA=0x02;
delay(10);
PA=0x03;
delay(10);
}
void zhengy()
{
PB=0x00;
delay(10);
PB=0x10;
delay(10);
}
void fuy()
{
PB=0x20;
delay(10);
PB=0x30;
delay(10);
}
void xian(int NX,int NY)
{int FM, NXY, XOY,ZF,z;
FM=0;
{if(NX>0)
if(NY>0)
XOY=1;
else
XOY=4;
else
if(NY>0)
XOY=2;
else
XOY=3;}
for(NXY= fabs(NX) + fabs(NY)-1;NXY>=0&&P32!=0&&P33!=0;NXY--)
{ {if(NX>0)
if(NY>0)
XOY=1;
else
XOY=4;
else
if(NY>0)
XOY=2;
else
XOY=3;}
for(NXY= fabs(NX) + fabs(NY)-1;NXY>=0;NXY--)
{ if(FM>=0)
{if(XOY==1||XOY==4)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();
}
FM=FM-fabs(NY);
}
else
{if(XOY==1||XOY==2)
{
ZF=3;
zhengy();
}
else
{ZF=4;
fuy();
}
FM=FM+fabs(NX);
}
}
for(z=0;z<200;z++)
{P35 = 0;
delay(10);
P35 = 1;
delay(10);
}
}
}
/*************************圆 弧 插 补***************************8*/
void yuanhu1( int X0,int Y0, int NX, int NY ,int RNS )
{
int NXY,BS,ZF,XM,YM,z;
int FM=0;
BS=fabs(NX-X0) + fabs(NY-Y0);
XM=fabs(X0);
YM=fabs(Y0);
for(NXY= fabs(NX-X0) + fabs(NY-Y0)-1;NXY>=0&&P32!=0&&P33!=0;NXY--)
{
if(RNS==1||RNS==3||RNS==6||RNS==8)
{
if(FM<0)
{
if(RNS==1||RNS==8)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();}
FM=FM+2*fabs(XM)+1;
XM=XM+1;
}
else
{
if(RNS==1||RNS==6)
{
ZF=3;
fuy();
}
else
{ZF=4;
zhengy();
}
FM=FM-2*fabs(YM)+1;
YM=YM-1;
}
}
else
if(FM>=0)
{
if(RNS==2||RNS==7)
{ZF=1;
zhengx();
}
else
{ZF=2;
fux();
}
FM=FM-2*fabs(XM)+1;
XM=XM-1;
}
else
{
if(RNS==2||RNS==5)
{ZF=3;
zhengy();}
else
{ZF=4;
fuy();}
FM=FM+2*fabs(YM)+1;
YM=YM+1;
}
}
if(P32==0||P33==0)
{
for(z=0;z<200;z++)
{P35 = 0;
delay(10);
P35 = 1;
delay(10);
}
}
}
int shu1 ()
{
int i=0,j=0,k=3;
while (1)
{
if(testkey())
{ delay(300);
delay1();
if(testkey())
{ j=getkey();
if(j!=14)
{i=i*10 + j;
k--;}
}}
if(k==0)
break;
}
return i;
}
int shu2 ()
{
int i=0,j=0,k=3;
while (1)
{
if(testkey())
{ delay(300);
delay1();
if(testkey())
{ j=getkey();
if(j!=14)
{i=i*10 + j;
k--;}
}}
if(k==0)
break;
}
return i;
}
void yuanhuchabu1()
{ int q=0;
delay(300);
R=shu1();
yj1();
q=R/100;
Page_ = 0x00;
Column = 0x35;
Code_ = q;
WriteCHN8x16();
q=R%100;
q=q/10;
Page_ = 0x00;
Column = 0x40;
Code_ = q;
WriteCHN8x16();
q=R%10;
Page_ = 0x00;
Column = 0x48;
Code_ = q;
WriteCHN8x16();
yuanhu1(R,0,0,R,5);
yuanhu1(0,R,-R,0,6);
yuanhu1(-R,0,0,-R,7);
yuanhu1(0,-R,R,0,8);
}
void yuanhuchabu2()
{ int q=0;
delay(300);
R=shu1();
yj1();
q=R/100;
Page_ = 0x00;
Column = 0x35;
Code_ = q;
WriteCHN8x16();
q=R%100;
q=q/10;
Page_ = 0x00;
Column = 0x40;
Code_ = q;
WriteCHN8x16();
q=R%10;
Page_ = 0x00;
Column = 0x48;
Code_ = q;
WriteCHN8x16();
yuanhu1(0,R,R,0,1);
yuanhu1(R,0,0,-R,4);
yuanhu1(0,-R,-R,0,3);
yuanhu1(-R,0,0,R,2);
}
void xianchabu()
{ int q1=0,q2=0;
delay(300);
NX=shu1();
delay(300);
NY=shu2();
yj2();
Page_ = 0x00;
Column = 0x25;
Code_ = 0x10;
WriteCHN8x16();
q1=NX/100;
Page_ = 0x00;
Column = 0x30;
Code_ = q1;
WriteCHN8x16();
q1=NX%100;
q1=q1/10;
Page_ = 0x00;
Column = 0x37;
Code_ = q1;
WriteCHN8x16();
q1=NX%10;
Page_ = 0x00;
Column = 0x40;
Code_ = q1;
WriteCHN8x16();
q2=NY/100;
Page_ = 0x00;
Column = 0x50;
Code_ =q1;
WriteCHN8x16();
q2=NY%100;
q2=q2/10;
Page_ = 0x00;
Column = 0x58;
Code_ = q2;
WriteCHN8x16();
q2=NY%10;
Page_ = 0x00;
Column = 0x60;
Code_ = q2;
WriteCHN8x16();
Page_ = 0x00;
Column = 0x72;
Code_ = 0x11;
WriteCHN8x16();
xian(NX,NY );
}
void main()
{ int q=0,q1=0,q2=0;
caas=mode;
PA=0X00;
PB=0X00;
PC=0x00;
R=0X00;
while(1)
{
if(testkey())
{
delay1();
if(testKey())
{ delay1();
if(getkey()==15)
{
delay(300);
yuanhuchabu1();
}
else if(getkey()==10)
{ delay(300);
yuanhuchabu2();
}
else if(getkey()==13)
{
xianchabu();
}
else if(getkey()==1)
{
zhengx();
}
else if(getkey()==2)
{
fux();
}
else if(getkey()==3)
{
zhengy();
} else if(getkey()==4)
{
fuy();
}
}
}
if(GetKey()==12)
{ break;}
}
}
❻ 单片机怎么控制步进电机
ULN2003D 是驱动步进电机的驱动芯片,主要是匹配电机所需的电流。
由于是四相电机,步进电机之所以可以转动就需要给相绕组提供连续的脉冲,所以需要4个端口来控制四相绕组的工作状态(P15应该是不需要的),具体的编码要看电机的拍数;
一旦明白这些,你就可以很容易编写代码来控制电机的转动了,还有在脉冲间你可以设置不同的延时时间来调节电机的转速。
❼ 单片机控制步进电机正反转,步进电机42步进电机 驱动tb6560
用TPC8-8TD可以直接输出信号到步进电机驱动器,实现步进电机的自动控制。采用表格设置汉字显示方式设置需要的运行功能。下图是接线原理图:
这个控制比单片机方便多了,10分钟即可设置一套基本的步进动作的控制。
❽ 单片机控制步进电动机的运动的原理及单片机程序
51单片步进电机控制原理与控制设计程序
51单片步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称vr)、永磁式步进电机(简称pm)和混合式步进电机(简称hb)。
51单片步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
51单片步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。其基本原理作用如下:
(1)控制换相顺序
通电换相这一过程称为脉冲分配。例如:三相步进电机的三拍工作方式,其各相通电顺序为a-b-c-d,通电控制脉冲必须严格按照这一顺序分别控制a,b,c,d相的通断。
(2)控制步51单片进电机的转向
如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
(3)控制51单片步进电机的速度
如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。