Ⅰ linux内核中断之中断申请接口
本文基于 RockPI 4A 单板Linux4.4内核介绍中断申请的常用接口函数。
1、文件
2、定义
说明:
1)、 irq :要申请的中断号,可通过 platform_get_irq() 获取,见“Linux内核中断之获取中断号”。
2)、 handler :中断处理函数,发生中断时,先处理中断处理函数,然后返回 IRQ_WAKE_THREAD 唤醒中断处理线程。中断处理函数尽可能简单。
中断处理函数定义: typedef irqreturn_t (*irq_handler_t)(int, void *);
中断返回值如下:
3)、 thread_fn :中断处理线程,该参数可为NULL。类似于中断处理函数的下半部分。
4)、 irqflags :中断类型标志。
定义文件: include/linux/interrupt.h ,内容如下:
5)、 devname :中断名称,可使用 cat /proc/interrupts 命令查看。
6)、 dev_id :设备ID,该值唯一。
在使用共享中断时(即设置 IRQF_SHARED ),必须传入 dev_id ,在中断处理和释放函数中都会使用该参数。
注:
1、 request_threaded_irq() 函数可替代 request_irq 加 tasklet 或 workqueue 的方式。
2、对应的中断释放函数为: void free_irq(unsigned int, void *) ,需要和中断申请函数成对出现。
1、文件
2、定义
说明:
1)、 __must_check :指调用函数一定要处理函数的返回值,否则编译器会给出警告。
2)、 request_irq() 函数本质上是中断处理线程 thread_fn 为空的 request_threaded_irq() 函数。
注 :
对应的中断释放函数为: void free_irq(unsigned int, void *) ,需要和中断申请函数成对出现。
1、文件
2、定义
说明 :
devm_request_threaded_irq() 本质上还是使用 request_threaded_irq() 函数实现中断申请。
两者区别:
1)多了一个 dev 参数;
2)在设备驱动卸载时,中断会自动释放;
3)如果想单独释放中断,可使用 void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id) 函数。
1、文件
2、定义
devm_request_irq() 函数本质上是中断处理线程 thread_fn 为空的 devm_request_threaded_irq() 函数。
1、获取中断号
2、申请中断
3、中断处理函数
4、中断处理线程
5、查看中断
Ⅱ Linux内核中断之获取中断号
Linux内核中可使用 platform_get_irq() 函数获取 dts 文件中设置的中断号。
函数原型: int platform_get_irq(struct platform_device *dev, unsigned int num)
定义文件: driversaseplatform.c
中断号获取函数 platform_get_irq() 调用流程如下:
rk3399 使用的是 GICv3 ,对应 irq_domain->name 。
文件: drivers/irqchip/irq-gic-v3.c 。
translate() 函数实现如下:
以 RockPI 4A 单板 Debian 系统Linux 4.4内核中的获取 HDMI 中断号为例。
1、查找中断号
从手册“Rockchip RK3399 TRM V1.3 Part1.pdf”中,可以查到 HDMI_IRQ 中断号,即55。
2、 dts 配置
文件: arch/arm64/boot/dts/rockchip/rk3399.dtsi
hdmi 使用的是 GIC_SPI 中断,按照 gic_irq_domain_translate() 函数中处理,需要将中断号55减去32,得到 dts 中的中断号23。
注: interrupts = <中断类型 中断号 中断触发类型 中断分区(对应哪个CPU cluster,PPI类型中断特有)>
3、驱动函数
文件: driversgpudrm ockchipdw_hdmi-rockchip.c
此时, irq 返回值为55。
后续会介绍 GIC 和中断注册等实现函数。
Ⅲ linux中,中断注册和中断服务程序只能写在驱动层还是能写在应用层
我也不完全理解,但是比你知道的多点。
Linux中,分内核态和用户态。
你写的所有的驱动,都是出于内核态->可以直接使用内核相关资源;
应用层,都是用户态->无法直接操作底层的东西 -> 想要操作,比如获得权限,切换到内核态,然后才能操作。
你这里的需求,我的理解是:
对应你这句
“在中断服务程序中操作另一个外设”
不知道你的目的和打算用的手段是啥
一般的,ISR中,操作别的设备,常见的是:
设置对应的(比如该硬件本身,或者别的设备B的)寄存器的对应的位,以便通知其某种事情发送或状态变化了。
然后设备B会:
要么是由于(被修改了寄存器而)发生了中断,然后可以接着处理其所要做的事情;
要么是一直轮训,检测对应的某种资源释放变化,比如上面被改的寄存器的对应的位,发现变化了,再去调用你的函数,做对应的处理。
注意:
中断,不论是哪个设备的中断,都不应该占用(CPU)太长时间
-> 导致别的中断或服务无法及时运行
仅供参考。
Ⅳ Linux内核中断之中断调用流程
本文基于 RockPI 4A 单板Linux4.4内核介绍中断调用流程。
ARMv8包括两种运行状态:AArch64和AArch32。
AArch64中不再使用AArch32中的7种特权模式,而是提出了Exception Levels的概念,包括:
1)EL0:用于用户态程序,权限最低
2)EL1:给内核使用,权限稍高
3)EL2:虚拟化相关,权限更高
4)EL3:安全相关,权限最高
Linux内核中一般只使用EL0和EL1。
AArch64异常向量表中的异常包括:
1)Synchronous exception(同步异常)
2)SError
3)IRQ
4)FIQ
注:SError、IRQ和FIQ属于异步异常。
在Linux内核中,在 arch/arm64/kernel/entry.S 文件中定义了异常向量表,内容如下:
选取 el1_irq() 函数介绍Linux内核中断的调用流程。
文件: arch/arm64/kernel/entry.S ,调用流程如下:
1、handle_irq()初始化
在 DTS 解析阶段完成 handle_irq() 函数的初始化,流程如下:
gic_irq_domain_map() 函数中完成了 handle_irq() 函数的赋值,具体执行如下:
2、handle_irq()实现
以共享外设中断 SPI 的中断处理函数 handle_fasteoi_irq() 为例,继续跟踪中断的执行过程。
handle_irq_event_percpu() 函数会调用已经注册的中断处理函数,同时唤醒 irq_thread 线程。
3、中断处理线程
在使用 request_threaded_irq() 函数申请中断时,会创建一个 irq_thread 线程,调用流程如下:
irq_thread 线程平时在睡眠状态,等待 handle_irq_event_percpu() 函数唤醒,进一步执行已注册的中断处理线程函数。
使用 DRM 框架中 HDMI 中断验证中断调用流程。
文件: driversgpudrmridgesynopsysdw-hdmi.c
在中断处理函数 dw_hdmi_hardirq() 和中断处理线程函数 dw_hdmi_irq 中增加 mp_stack() 调用( 注:仅限于调试验证 )。
插入 HDMI 线,系统启动后,显示中断调用流程的日志如下:
和
Ⅳ 关于linux注册的中断函数
我也不完全理解,但是比你知道的多点。
Linux中,分内核态和用户态。
你写的所有的驱动,都是出于内核态->可以直接使用内核相关资源;
应用层,都是用户态->无法直接操作底层的东西 -> 想要操作,比如获得权限,切换到内核态,然后才能操作。
你这里的需求,我的理解是:
对应你这句
“在中断服务程序中操作另一个外设”
不知道你的目的和打算用的手段是啥
一般的,ISR中,操作别的设备,常见的是:
设置对应的(比如该硬件本身,或者别的设备B的)寄存器的对应的位,以便通知其某种事情发送或状态变化了。
然后设备B会:
要么是由于(被修改了寄存器而)发生了中断,然后可以接着处理其所要做的事情;
要么是一直轮训,检测对应的某种资源释放变化,比如上面被改的寄存器的对应的位,发现变化了,再去调用你的函数,做对应的处理。
注意:
中断,不论是哪个设备的中断,都不应该占用(CPU)太长时间
-> 导致别的中断或服务无法及时运行
仅供参考。
1
从内核空间返回用户空间时,kernel检查是否有pending signal,如果有,执行。
Ⅵ 《Linux设备驱动程序》(十六)-中断处理
设备与处理器之间的工作通常来说是异步,设备数据要传递给处理器通常来说有以下几种方法:轮询、等待和中断。
让CPU进行轮询等待总是不能让人满意,所以通常都采用中断的形式,让设备来通知CPU读取数据。
2.6内核的函数参数与现在的参数有所区别,这里都主要介绍概念,具体实现方法需要结合具体的内核版本。
request_irq函数申请中断,返回0表示申请成功,其他返回值表示申请失败,其具体参数解释如下:
flags 掩码可以使用以下几个:
快速和慢速处理例程 :现代内核中基本没有这两个概念了,使用SA_INTERRUPT位后,当中断被执行时,当前处理器的其他中断都将被禁止。通常不要使用SA_INTERRUPT标志位,除非自己明确知道会发生什么。
共享中断 :使用共享中断时,一方面要使用SA_SHIRQ位,另一个是request_irq中的dev_id必须是唯一的,不能为NULL。这个限制的原因是:内核为每个中断维护了一个共享处理例程的列表,例程中的dev_id各不相同,就像设备签名。如果dev_id相同,在卸载的时候引起混淆(卸载了另一个中断),当中断到达时会产生内核OOP消息。
共享中断需要满足以下一个条件才能申请成功:
当不需要使用该中断时,需要使用free_irq释放中断。
通常我们会在模块加载的时候申请安装中断处理例程,但书中建议:在设备第一次打开的时候安装,在设备最后一次关闭的时候卸载。
如果要查看中断触发的次数,可以查看 /proc/interrupts 和 /proc/stat。
书中讲述了如何自动检测中断号,在嵌入式开发中通常都是查看原理图和datasheet来直接确定。
自动检测的原理如下:驱动程序通知设备产生中断,然后查看哪些中断信号线被触发了。Linux提供了以下方法来进行探测:
探测工作耗时较长,建议在模块加载的时候做。
中断处理函数和普通函数其实差不多,唯一的区别是其运行的中断上下文中,在这个上下文中有以下注意事项:
中断处理函数典型用法如下:
中断处理函数的参数和返回值含义如下:
返回值主要有两个:IRQ_NONE和IRQ_HANDLED。
对于中断我们是可以进行开启和关闭的,Linux中提供了以下函数操作单个中断的开关:
该方法可以在所有处理器上禁止或启用中断。
需要注意的是:
如果要关闭当前处理器上所有的中断,则可以调用以下方法:
local_irq_save 会将中断状态保持到flags中,然后禁用处理器上的中断;如果明确知道中断没有在其他地方被禁用,则可以使用local_irq_disable,否则请使用local_irq_save。
locat_irq_restore 会根据上面获取到flags来恢复中断;local_irq_enable 会无条件打开所有中断。
在中断中需要做一些工作,如果工作内容太多,必然导致中断处理所需的时间过长;而中断处理又要求能够尽快完成,这样才不会影响正常的系统调度,这两个之间就产生了矛盾。
现在很多操作系统将中断分为两个部分来处理上面的矛盾:顶半部和底半部。
顶半部就是我们用request_irq来注册的中断处理函数,这个函数要求能够尽快结束,同时在其中调度底半部,让底半部在之后来进行后续的耗时工作。
顶半部就不再说明了,就是上面的中断处理函数,只是要求能够尽快处理完成并返回,不要处理耗时工作。
底半部通常使用tasklet或者工作队列来实现。
tasklet的特点和注意事项:
工作队列的特点和注意事项:
Ⅶ Linux GPIO 中断函数注册
gpio中断函数设置方法
1.使能中断
2.声明定义函数
3.请求中断
Ⅷ 为什么中断注册成功但LINUX内核没有响应
中断注册成功了?
wince还是linux?
你是用gpio还是什么做的按键?
linux,首先在你的开发板启动后执行以下:cat /proc/interrupt,看哈你所要的中断号是否存在
存在的话,看哈你的request_irq里面的触发条件是否设置正确,是否写正确。
不存在,看哈你是否没有初始化正确,request_irq是否没有写正确。
以上只是建议。若是你用示波器打你的硬件,真的可以看见你的中断已经按照你的需求产生,那么硬件是没问题的。内核里面的中断组控制器初始化是没问题的。唯一的问题就只有你的初始化了。
wince差不多,只不过函数名不一样而已。