1. 用c++怎样编写51单片机程序
相信很多初学者都有同样的疑问,也有同样的希望。就是用C++语言来写单片机程序的源代码。现在我来解释一下单片机的源代码程序几乎没有人用C++来写的。
1. 假设一下你现在用C++写完了一个程序代码。那么你要让单片机认识必须要编译吧,对吧 。请问你有合适的编译软件来编译你的代码吗?
2. 就算有编译器能编译,你能保证它的代码效率一定能给单片机用吗?
单片机的ROM是K级的水平,执行指令的速度也远远小于PC。绝对不能和PC机相比的。这个就决定了单片机编程时很多时候要考虑它的代码效率和代码大小问题。所以一般情况下对于单片机编程我们之用汇编语言或者C语言。就算是用C写程序也要注意代码的效率等问题。
还有就是只有很大型的项目及应用程序开发才有可能有C++来写程序。一般的系统文件,应用程序都是用C来写的。有的系统代码甚至要用汇编语言来写。
举个生活中的例子:如果你从家里去公司上班你一般的出行方式是什么?
1.坐公车 2.骑车 3.自己开车 4.坐地铁 5.走过去。如果谁说他是做直升飞机去上班的。那要么这个人脑子不正常,要么就是太有钱了炫富。如果你要打苍蝇用苍蝇拍子就行了。如果要你用巡航导弹来打苍蝇,你认为可能吗?
所以我们单片机写程序的话一般就是汇编语言和C语言。几乎没有人用C++语言的。
2. 快速学习单片机编程的方法
单片机汇编语言编程规范
软件设计更多地是一种工程,而不是一种个人艺术。如果不统一编程规范,最终写出的程序,其可读性将较差,这
不仅给代码的理解带来障碍,增加维护阶段的工作量,同时不规范的代码隐含错误的可能性也比较大。分析表明,编码
阶段产生的错误当中,语法错误大概占20%左右,而由于未严格检查软件逻辑导致的错误、函数(模块)之间接口错误
及由于代码可理解度低导致优化维护阶段对代码的错误修改引起的错误则占了一半以上。可见,提高软件质量必须降低
编码阶段的错误率。如何有效降低编码阶段的错误呢?这需要制定详细的软件编程规范,并培训每一位程序员,最终的
结果可以把编码阶段的错误降至10%左右,同时也降低了程序的测试费用,效果相当显着。
本文从代码的可维护性(可读性、可理解性、可修改性)、代码逻辑与效率、函数(模块)接口、可测试性四个方
面阐述了软件编程规范,规范分成规则和建议两种,其中规则部分为强制执行项目,而建议部分则不作强制,可根据习
惯取舍。
1.排版
规则 1
程序块使用缩进方式,函数和标号使用空格缩进,程序段混合使用TAB 和空格缩进。缩进的目的是使程序结构清晰,便
于阅读和理解。
<TAB>默认宽度应为8 个空格,由于Word 中<TAB>为4 个空格,为示范清晰,此处用2 个<TAB>代替(下同)。
例如:
MOV R1, #00H
MOV R2, #00H
MOV PMR, #PMRNORMAL
MOV DPS, #FLAGDPTR
MOV DPTR, #ADDREEPROM
read1kloop:
read1kpage:
INC R1
MOVX A, @DPTR
MOV SBUF, A
JNB TI, $
CLR TI
INC DPTR
CJNE R1, #20H, read1kpage
INC R2
MOV R1, #00H
CPL WDI
CJNE R2, #20H, read1kloop ;END OF EEPROM
规则2
在指令的操作数之间的,使用空格进行间隔,采用这种松散方式编写代码的目的是使代码更加清晰。
例如:
CJNE R2, #20H, read1kloop ;END OF EEPROM
规则 3
一行最多写一条语句。
规则 4
变量定义时,保持对齐。便于阅读和检查内存的使用情况。
例如:
RegLEDLOSS EQU 30H ; VARIABLE ;
TESTLED==RegLEDLOSS.0
RegLEDRA EQU 31H ; VARIABLE
RUNLED_Flag EQU 32H ; VARIABLE ;
256ms 改变一次RUNLED 状态
RUNLED_Def EQU 10H ; STATIC ;
16*32ms=500ms 改变一次LED 状态
2.注释
注释的原则是有助于对程序的阅读理解,注释不宜太多也不能太少,太少不利于代码理解,太多则会对阅读产生干扰,
因此只在必要的地方才加注释,而且注释要准确、易懂、尽可能简洁。注释量一般控制在30%到50%之间。
规则 1
程序在必要的地方必须有注释,注释要准确、易懂、简洁。
例如如下注释意义不大:
MOV DXCE1COUNTER, #00H ; 将DXCE1COUNTER 赋值为0
而如下的注释则给出了额外有用的信息:
JNZ PcComm_Err ; 假如校验出错
规则 2
注释应与其描述的代码相近,对代码的注释应放在其上方或右方(对单条语句的注释)相邻位置,不可放在下面,如放
于上方则需与其上面的代码用空行隔开。
规则 3
头文件、源文件的头部,应进行注释。注释必须列出:文件名、作者、目的、功能、修改日志等。
规则 4
函数头部应进行注释,列出:函数的目的、功能、输入参数、输出参数、涉及到的通用变量和寄存器、调用的其他函数
和模块、修改日志等。对一些复杂的函数,在注释中最好提供典型用法。
规则 5
对重要代码段的功能、意图进行注释,提供有用的、额外的信息。并在该代码段的结束处加一行注释表示该段代码结束。
规则 6
对于所有的常量,变量,数据结构声明(包括数组、结构、类、枚举等),如果其命名不是充分自注释的,在声明时都必
须加以注释,说明其含义。
规则 7
维护代码时,要更新相应的注释,删除不再有用的注释。保持代码、注释的一致性,避免产生误解。
3.命名
规则 1
标识符缩写
形成缩写的几种技术:
1) 去掉所有的不在词头的元音字母。如screen 写成scrn, primtive 写成prmv。
2) 使用每个单词的头一个或几个字母。如Channel Activation 写成ChanActiv,ReleaseIndication 写成RelInd。
3) 使用变量名中每个有典型意义的单词。如Count of Failure 写成FailCnt。
4) 去掉无用的单词后缀 ing, ed 等。如Paging Request 写成PagReq。
5) 使用标准的或惯用的缩写形式(包括协议文件中出现的缩写形式)。
如 BSIC(Base Station Identification Code)、MAP(Mobile Application Part)。
关于缩写的准则:
1) 缩写应该保持一致性。如Channel 不要有时缩写成Chan,有时缩写成C
h。Length 有时缩写成Len,有时缩写成len。
2) 在源代码头部加入注解来说明协议相关的、非通用缩写。
3) 标识符的长度不超过12 个字符。
规则 2
变量命名约定:<前缀> + 主体 ; 注释
变量命名要考虑简单、直观、不易混淆。
前缀是可选项,表示变量类型,由于汇编中变量多是单字节变量,所以单字节变量可以不加前缀,对于 bit 和双字节型
变量,使用小写的b 和d 作为前缀表示。
主体是必选项,可多个单词(或缩写)合在一起,每个单词首字母大写,其余部分小写。
规则 3
常量的命名
常量的命名规则:单词的字母全部大写,各单词之间用下划线隔开。
规则 4
函数的命名
单词首字母为大写,其余均为小写。函数名应以一个动词开头,即函数名应类似一个动词断语或祈使句。
例如:Test_Protect, Check_EEPROM, Init_Para
4.可维护性
规则 1
函数和过程中关系较为紧密的代码尽可能相邻。
规则 2
每个函数的源程序行数原则上应该少于200 行。对于消息分流处理函数,完成的功能统一,但由于消息的种类多,可能
超过200 行的限制,不属于违反规定。
规则 3
语句嵌套层次不得超过5 层。嵌套层次太多,增加了代码的复杂度及测试的难度,容易出错,增加代码维护的难度。
规则 4
避免相同的代码段在多个地方出现。当某段代码需在不同的地方重复使用时,应根据代码段的规模大小使用函数调用或
宏调用的方式代替。这样,对该代码段的修改就可在一处完成,增强代码的可维护性。
规则 5
每个函数完成单一的功能,不设计多用途面面俱到的函数。多功能集于一身的函数,很可能使函数的理解、测试、维护
等变得困难。使函数功能明确化,增加程序可读性,亦可方便维护、测试。
规则 6
在函数的项目维护文档中,应该指出软件适用的硬件平台及版本。
建议 1
使用专门的初始化函数对所有的公共变量进行初始化。
5.程序正确性、效率
规则 1
严禁使用未经初始化的变量。引用未经初始化的变量可能会产生不可预知的后果,特别是引用未经初始化的指针经常会
导致系统崩溃,需特别注意。
规则 2
防止内存操作越界。
说明:内存操作越界是软件系统主要错误之一,后果往往非常严重。
规则 3
注意变量的有效取值范围,防止表达式出现上溢或下溢。
规则 4
防止易混淆的指令和操作数拼写错误。
规则 5
避免函数中不必要语句,防止程序中的垃圾代码,预留代码应以注释的方式出现。程序中的垃圾代码不仅占用额外的空
间,而且还常常影响程序的功能与性能,很可能给程序的测试、维护等造成不必要的麻烦。
规则 6
通过对系统数据结构的划分与组织的改进,以及对程序算法的优化来提高空间效率。这种方式是解决软件空间效率的根
本办法。
规则 7
循环体内工作量最小化。应仔细考虑循环体内的语句是否可以放在循环体之外,使循环体内工作量最小,从而提高程序
的时间效率。
规则 8
在多重循环中,应将最忙的循环放在最内层。
规则 9
避免循环体内含判断语句,将与循环变量无关的判断语句移到循环体外。目的是减少判断次数。循环体中的判断语句是
否可以移到循环体外,要视程序的具体情况而言,一般情况,与循环变量无关的判断语句可以移到循环体外,而有关的
则不可以。
规则 10
中断和恢复
中断程序应该尽量短,应该在中断中进行标记,在主程序中处理。但实时性很高的程序段例外。
中断时应该保存所有涉及到的通用变量和寄存器,如 A, PSW, DPTR 等。
规则 11
堆栈设置
堆栈对于程序非常重要,对于堆栈的设置要合理。堆栈太小,在嵌套调用和容易溢出,造成系统故障;堆栈太大,浪费
RAM 资源。为了节约堆栈资源,中断时要求不要保存太多资源,中断嵌套和程序嵌套层数不要太多,尽量不要超过5
层。这就要求合理的划分功能模块。
规则 12
看门狗
看门狗电路用于在单片机死机时自动复位。单片机需要定时向看门狗发送脉冲,俗称”喂狗”。喂狗不可太勤,这样看门
狗没有起到作用;也不可太慢,这样容易造成单片机复位。正确的喂狗应该在主循环中进行,最好是建立一个独立的系
统监控进程。不可以在定时中断中喂狗,应为单片机有时可能会在主循环中死掉。
6.接口
规则 1
去掉没有必要的公共变量,编程时应尽量少用公共变量。公共变量是增大模块间耦合的原因之一,故应减少没必要的公
共变量以降低模块间的耦合度。应该构造仅有一个模块或函数可以修改、创建,而其余有关模块或函数只访问的公共变
量,防止多个不同模块或函数都可以修改、创建同一公共变量的现象。
规则 2
当向公共变量传递数据时,要防止越界现象发生。对公共变量赋值时,若有必要应进行合法性检查,以提高代码的可靠
性、稳定性。
规则 3
尽量不设计多参数函数,将不使用的参数从接口中去掉,降低接口复杂度,减少函数间接口的复杂度。
规则 4
对所调用函数的返回码要仔细、全面地处理。防止把错误传递到后面的处理流程。如有意不检查其返回码,应明确指明。
规则5
检查接口函数所有输入参数的有效性。
规则 6
检查函数的所有非参数输入,如外部数据、公共变量等。
7.代码可测性
规则 1
模块编写应该有完善的测试方面的考虑。
规则 2
源代码中应该设计了代码测试的内容。
在编写代码之前,应预先设计好程序调试与测试的方法和手段,并设计好各种调测开关及相应测试代码。程序的调试与
测试是软件生存周期中很重要的一个阶段,如何对软件进行较全面、高率的测试并尽可能地找出软件中的错误就成为很
关键的问题。因此在编写源代码之前,除了要有一套比较完善的测试计划外,还应设计出一系列代码测试手段,为单元
测试、集成测试及系统联调提供方便。
规则 3
在同一项目组或产品组内,要有一套统一的为集成测试与系统联调准备的调测开关及相应函数,并且要有详细的说明。
本规则是针对项目组或产品组的。
规则 4
在同一项目组或产品组内,调测打印出的信息串的格式要有统一的形式。信息串中至少要有所在模块名(或源文件名)
及行号。统一的调测信息格式便于集成测试。
规则 5
正式软件产品中应把调测代码去掉(即把有关的调测开关关掉)。
规则 6
用调测开关来切换软件的DEBUG 版和正式版,而不要同时存在正式版本和DEBUG 版本的不同源文件,以减少维护的
难度。
规则 7
在软件系统中设置与取消有关测试手段,不能对软件实现的功能等产生影响。即有测试代码的软件和关掉测试代码的软
件,在功能行为上应一致。
规则 8
发现错误应该立即修改,并且若有必要记录下来。
规则 9
开发人员应坚持对代码进行彻底的测试(单元测试),而不依靠他人或测试组来发现问题。
规则 10
清理、整理或优化后的代码要经过审查及测试。
规则 11
代码版本升级要经过严格测试。
8.代码编译
规则 1
打开编译器的所有告警开关对程序进行编译。防止隐藏可能是错误的告警。
规则 2
某些语句经编译后产生告警,但如果你认为它是正确的,那么应通过某种手段去掉告警信息。照着规范系统的学习,不久的将来你也是个高手了。
3. 求52单片机程序代码
程序代码如下:
#include<reg51.h>
sbitK1=P1^0;
sbitK2=P1^1;
voiddelay(inta)
{
inti;
while(a--)for(i=0;i<120;i++);
}
main()
{
unsignedcharkeyval=0,led=0xfe;
while(1)
{
if(K1==0)
{
delay(10);
if(K1==0)
{
keyval==1;
while(K1==0);
}
}
if(K2==0)
{
delay(10);
if(K2==0)
{
keyval==2;
while(K2==0);
}
}
if(keyval==1)P0=0xfe;
if(keyval==2)
{
P0=led;
led=_crol_(led,1);
delay(200);
}
}
}
4. 单片机应用程序的开发步骤
具体步骤如下:
1、首先,开启我们的keil软件,具体的安装步骤就不做太多的介绍了;
开启后,点击菜单栏上的Project选项,创建我们的工程,如图所示;
编译完成后,在我们的文件夹下找到.hex的文件,将其烧写到我们的芯片中即可。
5. 单片机C语言编程
KEY4EQU30H
KEY2EQU31H
ORG0000H
LJMPMAIN
ORG0030H
MAIN:
CLREA
MOVSP,#5FH
MOVKEY2,#0
MOVKEY4,#0
LOOP:
JBP1.0,LOOP
MOVR7,#10
LCALLDELAY
JBP1.0,LOOP
JNBP1.0,$
MOVP3,#0C0H
LOOP0:
LCALLKEYDEAL
MOVA,KEY4
JNZLOOP41
MOVA,P3
ANLA,#0F0H
ORLA,#0EH
MOVP3,A
SJMPLOOP21
LOOP41:
DECA
JNZLOOP42
MOVA,P3
ANLA,#0F0H
ORLA,#0DH
MOVP3,A
SJMPLOOP21
LOOP42:
DECA
JNZLOOP43
MOVA,P3
ANLA,#0F0H
ORLA,#0BH
MOVP3,A
SJMPLOOP21
LOOP43:
DECA
JNZLOOP21
MOVA,P3
ANLA,#0F0H
ORLA,#07H
MOVP3,A
LOOP21:
MOVA,KEY2
JNZLOOP22
MOVA,P3
ANLA,#0FH
ORLA,#20H
MOVP3,A
SJMPLOOP3
LOOP22:
DECA
JNZLOOP3
MOVA,P3
ANLA,#0FH
ORLA,#10H
MOVP3,A
LOOP3:
LJMPLOOP0
;----------------------------
DELAY:
MOVR2,#2
DLY1:
MOVR3,#250
DJNZR3,$
DJNZR2,DLY1
DJNZR7,DELAY
RET
;-----------------------------
KEYDEAL:
JBP1.1,KEYEN1
MOVR7,#10
LCALLDELAY
JBP1.1,KEYEN1
JNBP1.1,$
INCKEY4
MOVA,KEY4
ANLA,#03H
MOVKEY4,A
KEYEN1:
JBP1.2,KEYEN2
MOVR7,#10
LCALLDELAY
JBP1.2,KEYEN2
JNBP1.2,$
INCKEY2
MOVA,KEY2
ANLA,#01H
MOVKEY2,A
KEYEN2:
RET
;-----------------------------
6. 如何写出高效的单片机C语言程序代码
由于单片机的性能同电脑的性能是天渊之别的,无论从空间资源上、内存资源、工作频率,都是无法
与之比较的。PC 机编程基本上不用考虑空间的占用、内存的占用的问题,最终目的就是实现功能就可以了。
对于单片机来说就截然不同了,一般的单片机的Flash 和Ram 的资源是以KB 来衡量的,可想而知,单片
机的资源是少得可怜,为此我们必须想法设法榨尽其所有资源,将它的性能发挥到最佳,程序设计时必须
遵循以下几点进行优化:
1. 使用尽量小的数据类型
能够使用字符型(char)定义的变量,就不要使用整型(int)变量来定义;能够使用整型变量定义的变
量就不要用长整型(long int),能不使用浮点型(float)变量就不要使用浮点型变量。当然,在定义变
量后不要超过变量的作用范围,如果超过变量的范围赋值,C 编译器并不报错,但程序运行结果却错了,
而且这样的错误很难发现。
2. 使用自加、自减指令
通常使用自加、自减指令和复合赋值表达式(如a-=1 及a+=1 等)都能够生成高质量的
程序代码,编译器通常都能够生成inc 和dec 之类的指令,而使用a=a+1 或a=a-1 之类
的指令,有很多C 编译器都会生成二到三个字节的指令。
3. 减少运算的强度
可以使用运算量小但功能相同的表达式替换原来复杂的的表达式。
(1) 求余运算
N= N %8 可以改为N = N &7
说明:位操作只需一个指令周期即可完成,而大部分的C 编译器的“%”运算均是调用子程序来
完成,代码长、执行速度慢。通常,只要求是求2n 方的余数,均可使用位操作的方法来代替。
(2) 平方运算
N=Pow(3,2) 可以改为N=3*3
说明:在有内置硬件乘法器的单片机中(如51 系列),乘法运算比求平方运算快得多, 因为浮点数
的求平方是通过调用子程序来实现的,乘法运算的子程序比平方运算的子程序代码短,执行速度快。
(3) 用位移代替乘法除法
N=M*8 可以改为N=M<<3
N=M/8 可以改为N=M>>3
说明:通常如果需要乘以或除以2n,都可以用移位的方法代替。如果乘以2n,都可以生成左移
的代码,而乘以其它的整数或除以任何数,均调用乘除法子程序。用移位的方法得到代码比调用乘除法子
程序生成的代码效率高。实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果。如N=M*9
可以改为N=(M<<3)+M;
(4) 自加自减的区别
例如我们平时使用的延时函数都是通过采用自加的方式来实现。
void DelayNms(UINT16 t)
{
UINT16 i,j;
for(i=0;i<t;i++)
for(j=0;i<1000;j++)
}
可以改为
void DelayNms(UINT16 t)
{
UINT16 i,j;
for(i=t;i>=0;i--)
for(j=1000;i>=0;j--)
}
说明:两个函数的延时效果相似,但几乎所有的C 编译对后一种函数生成的代码均比前一种代码少1~3
个字节,因为几乎所有的MCU 均有为0 转移的指令,采用后一种方式能够生成这类指令。
4. while 与do...while 的区别
void DelayNus(UINT16 t)
{
while(t--)
{
NOP();
}
}
可以改为
void DelayNus(UINT16 t)
{
do
{
NOP();
}while(--t)
}
说明:使用do…while 循环编译后生成的代码的长度短于while 循环。
5. register 关键字
void UARTPrintfString(INT8 *str)
{
while(*str && str)
{
UARTSendByte(*str++)
}
}
可以改为
void UARTPrintfString(INT8 *str)
{
register INT8 *pstr=str;
while(*pstr && pstr)
{
UARTSendByte(*pstr++)
}
}
说明:在声明局部变量的时候可以使用register 关键字。这就使得编译器把变量放入一个多用途的寄存
器中,而不是在堆栈中,合理使用这种方法可以提高执行速度。函数调用越是频繁,越是可能提高代码的
速度,注意register 关键字只是建议编译器而已。
6. volatile 关键字
volatile 总是与优化有关,编译器有一种技术叫做数据流分析,分析程序中的变量在哪里赋值、在
哪里使用、在哪里失效,分析结果可以用于常量合并,常量传播等优化,进一步可以死代码消除。一般来
说,volatile 关键字只用在以下三种情况:
a) 中断服务函数中修改的供其它程序检测的变量需要加volatile(参考本书高级实验程序)
b) 多任务环境下各任务间共享的标志应该加volatile
c) 存储器映射的硬件寄存器通常也要加volatile 说明,因为每次对它的读写都可能由不同意义
总之,volatile 关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素
更改,比如:操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码
就不再进行优化,从而可以提供对特殊地址的稳定访问。
7. 单片机c语言编程100个实例
51单片机C语言编程实例 基础知识:51单片机编程基础 单片机的外部结构: 1. DIP40双列直插; 2. P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平) 3. 电源VCC(PIN40)和地线GND(PIN20); 4. 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位) 5. 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍) 6. 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序) 7. P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务) 1. 四个8位通用I/O端口,对应引脚P0、P1、P2和P3; 2. 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1) 3. 一个串行通信接口;(SCON,SBUF) 4. 一个中断控制器;(IE,IP) 针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。 C语言编程基础: 1. 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。 2. 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。 3. ++var表示对变量var先增一;var—表示对变量后减一。 4. x |= 0x0f;表示为 x = x | 0x0f; 5. TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。 6. While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;} 在某引脚输出高电平的编程方法:(比如P1.3(PIN4)引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P1.3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 注意:P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。 在某引脚输出低电平的编程方法:(比如P2.7引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2.7 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 在某引脚输出方波编程方法:(比如P3.1引脚) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P3.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 5. { 6. P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC 7. P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND 8. } //由于一直为真,所以不断输出高、低、高、低……,从而形成方波 9. } 将某引脚的输入电平取反后,从另一个引脚输出:( 比如 P0.4 = NOT( P1.1) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_1 = 1; //初始化。P1.1作为输入,必须输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { 7. if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC 8. { P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 2 51单片机C语言编程实例 9. else //否则P1.1输入为低电平GND 10. //{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 11. { P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC 12. } //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平 13. } 将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:( 比如 P2 = NOT( P3 ) ) 代码 1. #include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P3 = 0xff; //初始化。P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { //取反的方法是异或1,而不取反的方法则是异或0 7. P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出 8. } //由于一直为真,所以不断将P3取反输出到P2 9. } 注意:一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。 第一节:单数码管按键显示 单片机最小系统的硬件原理接线图: 1. 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF 2. 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF 3. 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理 4. 接配置:EA(PIN31)。说明原因。 发光二极的控制:单片机I/O输出 将一发光二极管LED的正极(阳极)接P1.1,LED的负极(阴极)接地GND。只要P1.1输出高电平VCC,LED就正向导通(导通时LED上的压降大于1V),有电流流过LED,至发LED发亮。实际上由于P1.1高电平输出电阻为10K,起到输出限流的作用,所以流过LED的电流小于(5V-1V)/10K = 0.4mA。只要P1.1输出低电平GND,实际小于0.3V,LED就不能导通,结果LED不亮。 开关双键的输入:输入先输出高 一个按键KEY_ON接在P1.6与GND之间,另一个按键KEY_OFF接P1.7与GND之间,按KEY_ON后LED亮,按KEY_OFF后LED灭。同时按下LED半亮,LED保持后松开键的状态,即ON亮OFF灭。 代码 1. #include <at89x52.h> 2. #define LED P1^1 //用符号LED代替P1_1 3. #define KEY_ON P1^6 //用符号KEY_ON代替P1_6 4. #define KEY_OFF P1^7 //用符号KEY_OFF代替P1_7 5. void main( void ) //单片机复位后的执行入口,void表示空,无输入参数,无返回值 6. { 7. KEY_ON = 1; //作为输入,首先输出高,接下KEY_ON,P1.6则接地为0,否则输入为1 8. KEY_OFF = 1; //作为输入,首先输出高,接下KEY_OFF,P1.7则接地为0,否则输入为1 9. While( 1 ) //永远为真,所以永远循环执行如下括号内所有语句 10. { 11. if( KEY_ON==0 ) LED=1; //是KEY_ON接下,所示P1.1输出高,LED亮 12. if( KEY_OFF==0 ) LED=0; //是KEY_OFF接下,所示P1.1输出低,LED灭 13. } //松开键后,都不给LED赋值,所以LED保持最后按键状态。 14. //同时按下时,LED不断亮灭,各占一半时间,交替频率很快,由于人眼惯性,看上去为半亮态 15. } 数码管的接法和驱动原理 一支七段数码管实际由8个发光二极管构成,其中7个组形构成数字8的七段笔画,所以称为七段数码管,而余下的1个发光二极管作为小数点。作为习惯,分别给8个发光二极管标上记号:a,b,c,d,e,f,g,h。对应8的顶上一画,按顺时针方向排,中间一画为g,小数点为h。 我们通常又将各二极与一个字节的8位对应,a(D0),b(D1),c(D2),d(D3),e(D4),f(D5),g(D6),h(D7),相应8个发光二极管正好与单片机一个端口Pn的8个引脚连接,这样单片机就可以通过引脚输出高低电平控制8个发光二极的亮与灭,从而显示各种数字和符号;对应字节,引脚接法为:a(Pn.0),b(Pn.1),c(Pn.2),d(Pn.3),e(Pn.4),f(Pn.5),g(Pn.6),h(Pn.7)。 如果将8个发光二极管的负极(阴极)内接在一起,作为数码管的一个引脚,这种数码管则被称为共阴数码管,共同的引脚则称为共阴极,8个正极则为段极。否则,如果是将正极(阳极)内接在一起引出的,则称为共阳数码管,共同的引脚则称为共阳极,8个负极则为段极。 以单支共阴数码管为例,可将段极接到某端口Pn,共阴极接GND,则可编写出对应十六进制码的七段码表字节数据
8. 单片机编程步骤
一、什么是 nec 单片机
随着大范畴集成电路的显现和发展,将计算机的cpu、ram、rom、定时/数器和多种i/o接口集成在一片芯片上,组成芯片级的计较机,因此单片机早期的含义称为单片微型计较机,直译为单片机。单片机是一种集成在电路芯片,是采用超大范畴集成电路技能把具有数据处理本事的中心处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和间断系统、 定时器 / 计时器 等成果(大要还包括表现驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完竣的计算机系
二、nec单片机的操纵教程详解
1、在智能仪器仪表中的操纵:在各类仪器仪表中引入单片机,使仪器仪表智能化,进步测试的自动化程度和精度,简化仪器仪表的硬件结构,进步其性能价格比。
2、在机电一体化中的操纵:机电一体化产品是指集呆板、微电子技能、计较机技能于一本,具有智能化特征的电子产品。
3、在实时过程控制中的操纵:用单片机实时进行数据处理和控制,使系统保持最佳事变状态,进步系统的事变从命和产品的品格。
4、在人类生活中的操纵:目前国外各种家用电器已普通采用单片机代替传统的控制电路。
5、在此外方面的操纵:单片机除以上各方面的操纵,它还遍布操纵于办公自动化范围、商业营销范围、汽车及通信、计较机外部装备、暗昧控制等各范围中。
以上就是为大家整理的关于单片机含义及其具体操纵教程的全部内容了。此外小编还额外为大家整理了单片机的优点:低电压、低功耗、集成度高、可靠性高、体积小、控制成果强等。希望通过这篇文章能够给想要了解单片机相关知识的朋友带来一些帮助。另外大家如果想了解更多单片机的知识可以通过图书查阅、网络查阅等方式。
9. 单片机c语言编程
单片机的外部结构:
DIP40双列直插;
P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)
电源VCC(PIN40)和地线GND(PIN20);
高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)
内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)
程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)
P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1
单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)
四个8位通用I/O端口,对应引脚P0、P1、P2和P3;
两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)
一个串行通信接口;(SCON,SBUF)
一个中断控制器;(IE,IP)
针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。教科书的160页给出了针对MCS51系列单片机的C语言扩展变量类型。
C语言编程基础:
十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。
如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。
++var表示对变量var先增一;var—表示对变量后减一。
x |= 0x0f;表示为 x = x | 0x0f;
TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。
While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}
在某引脚输出高电平的编程方法:(比如P1.3(PIN4)引脚)
#include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P1.3
void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
{
P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC
While( 1 ); //死循环,相当 LOOP: goto LOOP;
}
注意:P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。
在某引脚输出低电平的编程方法:(比如P2.7引脚)
#include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2.7
void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口。
{
P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND
While( 1 ); //死循环,相当 LOOP: goto LOOP;
}
在某引脚输出方波编程方法:(比如P3.1引脚)
#include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P3.1
void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
{
While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
{
P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC
P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND
} //由于一直为真,所以不断输出高、低、高、低……,从而形成方波
}
将某引脚的输入电平取反后,从另一个引脚输出:( 比如 P0.4 = NOT( P1.1) )
#include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1
void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
{
P1_1 = 1; //初始化。P1.1作为输入,必须输出高电平
While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
{
if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC
{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND
else //否则P1.1输入为低电平GND
//{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND
{ P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC
} //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平
}
将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:( 比如 P2 = NOT( P3 ) )
#include <AT89x52.h> //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3
void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
{
P3 = 0xff; //初始化。P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平
While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
{ //取反的方法是异或1,而不取反的方法则是异或0
P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出
} //由于一直为真,所以不断将P3取反输出到P2
}
注意:一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。