① linux 系统中的中断是不是没有中断优先级
关于中断嵌套:在linux内核里,如果驱动在申请注册中断的时候没有特别的指定,do_irq在做中断响应的时候,是开启中断的,如果在驱动的中断处理函数正在执行的过程中,出现同一设备的中断或者不同设备的中断,这时候新的中断会被立即处理,还是被pending,等当前中断处理完成后,再做处理。在2.4和2.6内核里,关于这一块是否有什么不同。 一般申请中断的时候都允许开中断,即不使用SA_INTERRUPT标志。如果允许共享则加上 SA_SHIRQ,如果可以为内核熵池提供熵值(譬如你写的驱动是ide之类的驱动),则再加上 SA_SAMPLE_RANDOM标志。这是普通的中断请求过程。对于这种一般情况,只要发生中断,就可以抢占内核,即使内核正在执行其他中断函数。这里有两点说明:一是因为linux不支持 中断优先级,因此任何中断都可以抢占其他中断,但是同种类型的中断(即定义使用同一个 中断线的中断)不会发生抢占,他们会在执行本类型中断的时候依次被调用执行。二是所谓 只要发生中断,就可以抢占内核这句是有一定限制的,因为当中断发生的时候系统由中断门 进入时自动关中断(对于x86平台就是将eflags寄存器的if位置为0),只有当中断函数被执行 (handle_IRQ_event)的过程中开中断之后才能有抢占。 对于同种类型的中断,由于其使用同样的idt表项,通过其状态标志(IRQ_PENDING和 IRQ_INPROGRESS)可以防止同种类型的中断函数执行(注意:是防止handle_IRQ_event被重入, 而不是防止do_IRQ函数被重入),对于不同的中断,则可以自由的嵌套。因此,所谓中断嵌套, 对于不同的中断是可以自由嵌套的,而对于同种类型的中断,是不可以嵌套执行的。以下简单解释一下如何利用状态标志来防止同种类型中断的重入:当某种类型的中断第一次发生时,首先其idt表项的状态位上被赋予IRQ_PENDING标志,表示有待处理。 然后将中断处理函数action置为null,然后由于其状态没有IRQ_INPROGRESS标志(第一次),故将其状态置上IRQ_INPROGRESS并去处IRQ_PENDING标志,同时将action赋予相应的中断处理函数指针(这里是一个重点,linux很巧妙的用法,随后说明)。这样,后面就可以顺利执行handle_IRQ_event进行中断处理,当在handle_IRQ_event中开中断后,如果有同种类型的中断发生,则再次进入do_IRQ函数,然后其状态位上加上IRQ_PENDING标志,但是由于前一次中断处理中加上的IRQ_INPROGRESS没有被清除,因此这里无法清除IRQ_PENDING标志,因此action还是为null,这样就无法再次执行handle_IRQ_event函数。从而退出本次中断处理,返回上一次的中断处理函数中,即继续执行handle_IRQ_event函数。当handle_IRQ_event返回时检查IRQ_PENDING标志,发现存在这个标志,说明handle_IRQ_event执行过程中被中断过,存在未处理的同类中断,因此再次循环执行handle_IRQ_event函数。直到不存在IRQ_PENDING标志为止。2.4和2.6的差别,就我来看,主要是在2.6中一进入do_IRQ,多了一个关闭内核抢占的动作,同时在处理中多了一种对IRQ_PER_CPU类型的中断的处理,其他没有什么太大的改变。这类IRQ_PER_CPU的中断主要用在smp环境下将中断绑定在某一个指定的cpu上。例如arch/ppc/syslib/open_pic.c中的openpic_init中初始化ipi中断的时候。 其实简单的说,中断可以嵌套,但是同种类型的中断是不可以嵌套的,因为在IRQ上发生中断,在中断响应的过程中,这个IRQ是屏蔽的,也就是这个IRQ的中断是不能被发现的。 同时在内核的临界区内,中断是被禁止的 关于do_IRQ可能会丢失中断请求:do_IRQ函数是通过在执行完handle_IRQ_event函数之后判断status是否被设置了IRQ_PENDING标志来判断是否还有没有被处理的同一通道的中断请求。 但是这种方法只能判断是否有,而不能知道有多少个未处理的统一通道中断请求。也就是说,假如在第一个中断请求执行handle_IRQ_event函数的过程中来了同一通道的两个或更多中断请求,而这些中断不会再来,那么仅仅通过判断status是否设置了IRQ_PENDING标志不知道到底有多少个未处理的中断,handle_IRQ_event只会被再执行一次。这算不算是个bug呢? 不算,只要知道有中断没有处理就OK了,知道1个和知道N个,本质上都是一样的。作为外设,应当能够处理自己中断未被处理的情况。不可能丢失的,在每一个中断描述符的结构体内,都有一个链表,链表中存放着服务例程序关于中断中使用的几个重要概念和关系: 一、基本概念 1. 产生的位置 发生的时刻 时序 中断 CPU外部 随机 异步 异常 CPU正在执行的程序 一条指令终止执行后 同步 2.由中断或异常执行的代码不是一个进程,而是一个内核控制路径,代表中断发生时正在运行的进程的执行 中断处理程序与正在运行的程序无关 引起异常处理程序的进程正是异常处理程序运行时的当前进程 二、特点 (2)能以嵌套的方式执行,但是同种类型的中断不可以嵌套 (3)尽可能地限制临界区,因为在临界区中,中断被禁止 2.大部分异常发生在用户态,缺页异常是唯一发生于内核态能触发的异常 缺页异常意味着进程切换,因此中断处理程序从不执行可以导致缺页的操作 3.中断处理程序运行于内核态 中断发生于用户态时,要把进程的用户空间堆栈切换到进程的系统空间堆栈,刚切换时,内核堆栈是空的 中断发生于内核态时, 不需要堆栈空间的切换 三、分类 1.中断的分类:可屏蔽中断、不可屏蔽中断 2.异常的分类: 分类 解决异常的方法 举例 故障 那条指令会被重新执行 缺页异常处理程序 陷阱 会从下一条指令开始执行 调试程序
② Linux中断补充
在系统结构中,CPU工作的模式有两种,一种是中断,由各种设备发起;一种是轮询,由CPU主动发起。
中断IRQ:
中断允许让设备(如键盘,串口卡,并口等设备)表明它们需要CPU。一旦CPU接收了中断请求,CPU就会暂时停止执行正在运行的程序,并且调用一个称为中断处理器或中断服务程序(interrupt service routine)的特定程序。CPU处理完中断后,就会恢复执行之前被中断的程序。
中断分类:
硬中断+软中断
硬中断:
①非屏蔽中断:不能被屏蔽,硬件发生的错误:内存错误,风扇故障,温度传感器故障等。
②可屏蔽中断:可被CPU忽略或延迟处理。当缓存控制器的外部针脚被触发的时候就会产生这种类型的中断,而中断屏蔽寄存器就会将这样的中断屏蔽掉。我们可以将一个比特位设置为0,来禁用在此针脚触发的中断。
软中断:
是软件实现的中断,也就是程序运行时其他程序对它的中断;而硬中断是硬件实现的中断,是程序运行时设备对它的中断。
CPU之间的中断处理(IPI)
处理器间中断允许一个CPU向系统其他的CPU发送中断信号,处理器间中断(IPI)不是通过IRQ线传输的,而是作为信号直接放在连接所有CPU本地APIC的总线上。
CALL_FUNCTION_VECTOR (向量0xfb)
发往所有的CPU,但不包括发送者,强制这些CPU运行发送者传递过来的函数,相应的中断处理程序叫做call_function_interrupt(),例如,地址存放在群居变量call_data中来传递的函数,可能强制其他所有的CPU都停止,也可能强制它们设置内存类型范围寄存器的内容。通常,这种中断发往所有的CPU,但通过smp_call_function()执行调用函数的CPU除外。
RESCHEDULE_VECTOR (向量0xfc)
当一个CPU接收这种类型的中断时,相应的处理程序限定自己来应答中断,当从中断返回时,所有的重新调度都自动运行。
INVALIDATE_TLB_VECTOR (向量0xfd)
发往所有的CPU,但不包括发送者,强制它们的转换后援缓冲器TLB变为无效。相应的处理程序刷新处理器的某些TLB表项。
③ 关于linux 软中断对网卡性能的影响以及优化
首先,要对软中断有一个认识,程序运行后,操作系统会发送程序需要的一些cpu指令到某个cpu,扔给CPU的这个过程是异步的,cpu获得指令后操作完成会触发一个硬中断,并且把操作的结果保存在寄存器,之后linux内核会启动ksofttrip进程去,来获取操作结果,这个动作就叫做软中断。
linux默认会起n个ksofttrip进程,n等于cpu的个数,ksofttrip是死循环,只要有软中断,它就会一直去获取,n个ksoftrip获取源是一样的,为什么要起n个进程呢?就是为了 ,当某个cpu空闲,哪个就去跑。通常操作系统里它的进程名是 ksoftrip/n ,n是对应的cpu的编号,ksoft进程跟cpu是一对一绑定的。
现在来说说网卡的性能问题,要想优化,首先你的网卡必须是多通道队列的。那如何知道你的网卡是否是多队列的呢? 通过cat /proc/interrept |grep eth0|wc -l 可以看到网卡通道队列的数量.
现在来来说说优化方案,为什么要优化,因为linux默认情况所有的网卡的软中断都是的cpu0,所以加入你的ksoftrip/0总是跑满,就说明可能是网卡问题了。
方案1 ,SMP IRQ affinity技术
说白了,就是信号量分布技术,把特定信号量的处理放到固定的cpu上,每个网卡的通道队列都有一个自己的信号量。
首先查看所有网卡通道队列的信号量,方法 cat/proc/interrept |grep eth0
每行最开头的数字“n:”就是信号量,在/proc/irq/下面可以找到对应的以信号量命名的目录
找完了之后,可以进行信号量绑定了,在/proc/irq/n/下面有两个文件,分别是smp_affinity跟smp_affinity_list, 这两个是文件的内容是对应的,smp_affinity里是通过bitmask算法绑定cpu,smp_affinity_list是通过数字指定cpu编号的方法,例如 cpu0,文件里就是“0”,如果是cpu1跟2就是“1,2”
!!重点来了,虽然默认里面填写的是多个,但是!!!但是它只跑在绑定cpu中的第一个!!!坑啊!!!
所以,你要做的就是单独绑定每一个网卡的通道队列。
直接echo "1" >/proc/irq/ (cpu1的信号量)/snmp_affinity_list
echo "3" >/proc/irq/$(cpu2的信号量)/snmp_affinity_list
这个是最快速的解决方案,提升效率显着啊!!!
升级方案2,在方案1基础之上,RPS/RFS技术
此技术大家可以查网上,文章很多,优化效果是,单个网卡通道队列的软中断会平均到所有cpu上,并且会优化为,中断落在发出中断的程序所在的那个cpu上,这样节省了cpu cache。
坏消息是对单队列网卡而言,“smp_affinity”和“smp_affinity_list”配置多CPU无效。
好消息是Linux支持RPS,通俗点来说就是在软件层面模拟实现硬件的多队列网卡功能。
首先看看如何配置RPS,如果CPU个数是 8 个的话,可以设置成 ff:
shell> echo ff > /sys/class/net/eth0/queues/rx-0/rps_cpus
接着配置内核参数rps_sock_flow_entries(官方文档推荐设置: 32768):
shell> sysctl net.core.rps_sock_flow_entries=32768
最后配置rps_flow_cnt,单队列网卡的话设置成rps_sock_flow_entries即可:
echo 32768 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt
说明:如果是多队列网卡,那么就按照队列数量设置成 rps_sock_flow_entries / N 。
④ Linux下通过哪个命令怎么查看中断
与Linux设备驱动中中断处理相关的首先是申请与释放IRQ的API request_irq()和free_irq()。
C++是一种面向对象的计算机程序设计语言,由美国AT&T贝尔实验室的本贾尼·斯特劳斯特卢普博士在20世纪80年代初期发明并实现,最初它被称作“C with Classes”(包含类的C语言)。
它是一种静态数据类型检查的、支持多重编程范式的通用程序设计语言,支持过程化程序设计、数据抽象、面向对象程序设计、泛型程序设计等多种程序设计风格。
在C基础上,一九八三年又由贝尔实验室的Bjarne Strou-strup推出了C++,C++进一步扩充和完善了C语言,成为一种面向 对象的程序设计语言。
C++目前流行的编译器最新版本是Borland C++ 4.5,Symantec C++ 6.1,和Microsoft Visual C++ 2012。
⑤ linux进入临界去开关中断的几种方式
进入中断时候关闭全局的中断是为了避免程序处理中断过程中,再进入另一个中断打乱执行的顺序,也就是为了防止中断嵌套的情况发生。
比如在irq_handler函数中首先就应该关闭中断。
或者,在某些操作顺序中是不允许中断发生打断的情况。例如在驱动中常用的方式:
unsigned int flag;
local_irq_save(&flag);
... ... ... ...
local_irq_restore(&flag);
spin_loc_irqsave 禁止中断(只在本地处理器)在获得自旋锁之前;
之前的中断状态保存在 flags 里. 如果你绝对确定在你的处理器上没有禁止中断的(或者, 换句话说, 你确信你应当在你释放你的自旋锁时打开中断),你可以使用 spin_lock_irq 代替, 并且不必保持跟踪 flags.
最后, spin_lock_bh 在获取锁之前禁止软件中断, 但是硬件中断留作打开的。
⑥ Linux如何及时响应外部中断
FPGA每隔100us给运行linux的ARM一个中断,要求在20us内响应中断,并读走2000*16bit的数据。
目前主要的问题是,当系统同时发生多个中断时,会严重影响linux对FPGA中断的响应时间。如何解决?
1、首先想到了ARM的FIQ,它可以打断IRQ中断服务程序,保证对外部FIQ的及时响应。但是发现linux只实现了IRQ,没有显示FIQ。
linux是从devicetree读取中断号,加入中断向量表的。
interrupts = <0x0 0x32 0x0>;中的第一个字段0表示非共享中断,非零表示共享中断,SDK产生的dts统一为0,此时第二字段的值比XPS中的小32;如果第一字段非零,则第二字段比XPS小16.
最后字段表示中断的触发方式。
IRQ_TYPE_EDGE_RISING =0x00000001,
IRQ_TYPE_EDGE_FALLING =0x00000002,
IRQ_TYPE_LEVEL_HIGH =0x00000004,
IRQ_TYPE_LEVEL_LOW =0x00000008,
很明显,devicetree根本没有提供通知linux有FIQ的渠道。
2、再来看linux的IRQ
linux的中断分为上半部和下半部,上半部运行在IRQ模式,会屏蔽所有中断,下半部运行在SVC模式,会重新打开中断。
也就是说,当一个中断的上半部正在运行时(不能再次响应中断),FPGA的中断是不能被linux响应的;
反过来,当FPGA中断的上半部正在运行时(不能再次响应中断),其他的中断也不能被linux响应;
unsigned long flags;
...
local_irq_save(flags);
....
local_irq_restore(flags);
3.
ARM有七种模式,我们这里只讨论SVC、IRQ和FIQ模式。
我们可以假设ARM核心有两根中断引脚(实际上是看不见的),一根叫 irq pin, 一根叫fiq pin.
在ARM的cpsr中,有一个I位和一个F位,分别用来禁止IRQ和FIQ的。
先不说中断控制器,只说ARM核心。正常情况下,ARM核都只是机械地随着pc的指示去做事情,当CPSR中的I和F位为1的时候,IRQ和FIQ全部处于禁止状态。无论你在irq
pin和fiq pin上面发什么样的中断信号,ARM是不会理你的,你根本不能打断他,因为他耳聋了,眼也瞎了。
在I位和F位为0的时候,当irq
pin上有中断信号过来的时候,就会打断arm的当前工作,并且切换到IRQ模式下,并且跳到相应的异常向量表(vector)位置去执行代码。这个过程是自动的,但是返回到被中断打断的地方就得您亲自动手了。当你跳到异常向量表,处于IRQ的模式的时候,这个时候如果irq
pin上面又来中断信号了,这个时候ARM不会理你的,irq
pin就跟秘书一样,ARM核心就像老板,老板本来在做事,结果来了一个客户,秘书打断它,让客户进去了。而这个时候再来一个客户,要么秘书不断去敲门问,要么客户走人。老板第一个客户没有会见完,是不会理你的。
但是有一种情况例外,当ARM处在IRQ模式,这个时候fiq pin来了一个中断信号,fiq
pin是什么?是快速中断呀,比如是公安局的来查刑事案件,那才不管你老板是不是在会见客户,直接打断,进入到fiq模式下,并且跳到相应的fiq的异常向量表处去执行代码。那如果当ARM处理FIQ模式,fiq
pin又来中断信号,又就是又一批公安来了,那没戏,都是执法人员,你打不断我。那如果这个时候irq
pin来了呢?来了也不理呀,正在办案,还敢来妨碍公务。
所以得出一个结论: IRQ模式只能被FIQ模式打断,FIQ模式下谁也打不断。
在打不断的情况下,irq pin 或 fiq pin随便你怎么发中断信号,都是白发。
所以除了fiq能打断irq以外,根本没有所谓中断嵌套的情况。
Linux不用FIQ,只用到了IRQ。但是我们有时候一个中断需要处理很长时间,那我们就需要占用IRQ模式那么长的时间吗?没有,linux在IRQ模式下只是简单的记录是什么中断,马上就切换回了SVC模式,换句话说,Linux的中断处理都是在SVC模式下处理的。
只不过SVC模式下的ISR上半部关闭了当前中断线,下半部才重新打开
⑦ Linux内核中断之获取中断号
Linux内核中可使用 platform_get_irq() 函数获取 dts 文件中设置的中断号。
函数原型: int platform_get_irq(struct platform_device *dev, unsigned int num)
定义文件: driversaseplatform.c
中断号获取函数 platform_get_irq() 调用流程如下:
rk3399 使用的是 GICv3 ,对应 irq_domain->name 。
文件: drivers/irqchip/irq-gic-v3.c 。
translate() 函数实现如下:
以 RockPI 4A 单板 Debian 系统Linux 4.4内核中的获取 HDMI 中断号为例。
1、查找中断号
从手册“Rockchip RK3399 TRM V1.3 Part1.pdf”中,可以查到 HDMI_IRQ 中断号,即55。
2、 dts 配置
文件: arch/arm64/boot/dts/rockchip/rk3399.dtsi
hdmi 使用的是 GIC_SPI 中断,按照 gic_irq_domain_translate() 函数中处理,需要将中断号55减去32,得到 dts 中的中断号23。
注: interrupts = <中断类型 中断号 中断触发类型 中断分区(对应哪个CPU cluster,PPI类型中断特有)>
3、驱动函数
文件: driversgpudrm ockchipdw_hdmi-rockchip.c
此时, irq 返回值为55。
后续会介绍 GIC 和中断注册等实现函数。
⑧ 《Linux设备驱动程序》(十六)-中断处理
设备与处理器之间的工作通常来说是异步,设备数据要传递给处理器通常来说有以下几种方法:轮询、等待和中断。
让CPU进行轮询等待总是不能让人满意,所以通常都采用中断的形式,让设备来通知CPU读取数据。
2.6内核的函数参数与现在的参数有所区别,这里都主要介绍概念,具体实现方法需要结合具体的内核版本。
request_irq函数申请中断,返回0表示申请成功,其他返回值表示申请失败,其具体参数解释如下:
flags 掩码可以使用以下几个:
快速和慢速处理例程 :现代内核中基本没有这两个概念了,使用SA_INTERRUPT位后,当中断被执行时,当前处理器的其他中断都将被禁止。通常不要使用SA_INTERRUPT标志位,除非自己明确知道会发生什么。
共享中断 :使用共享中断时,一方面要使用SA_SHIRQ位,另一个是request_irq中的dev_id必须是唯一的,不能为NULL。这个限制的原因是:内核为每个中断维护了一个共享处理例程的列表,例程中的dev_id各不相同,就像设备签名。如果dev_id相同,在卸载的时候引起混淆(卸载了另一个中断),当中断到达时会产生内核OOP消息。
共享中断需要满足以下一个条件才能申请成功:
当不需要使用该中断时,需要使用free_irq释放中断。
通常我们会在模块加载的时候申请安装中断处理例程,但书中建议:在设备第一次打开的时候安装,在设备最后一次关闭的时候卸载。
如果要查看中断触发的次数,可以查看 /proc/interrupts 和 /proc/stat。
书中讲述了如何自动检测中断号,在嵌入式开发中通常都是查看原理图和datasheet来直接确定。
自动检测的原理如下:驱动程序通知设备产生中断,然后查看哪些中断信号线被触发了。Linux提供了以下方法来进行探测:
探测工作耗时较长,建议在模块加载的时候做。
中断处理函数和普通函数其实差不多,唯一的区别是其运行的中断上下文中,在这个上下文中有以下注意事项:
中断处理函数典型用法如下:
中断处理函数的参数和返回值含义如下:
返回值主要有两个:IRQ_NONE和IRQ_HANDLED。
对于中断我们是可以进行开启和关闭的,Linux中提供了以下函数操作单个中断的开关:
该方法可以在所有处理器上禁止或启用中断。
需要注意的是:
如果要关闭当前处理器上所有的中断,则可以调用以下方法:
local_irq_save 会将中断状态保持到flags中,然后禁用处理器上的中断;如果明确知道中断没有在其他地方被禁用,则可以使用local_irq_disable,否则请使用local_irq_save。
locat_irq_restore 会根据上面获取到flags来恢复中断;local_irq_enable 会无条件打开所有中断。
在中断中需要做一些工作,如果工作内容太多,必然导致中断处理所需的时间过长;而中断处理又要求能够尽快完成,这样才不会影响正常的系统调度,这两个之间就产生了矛盾。
现在很多操作系统将中断分为两个部分来处理上面的矛盾:顶半部和底半部。
顶半部就是我们用request_irq来注册的中断处理函数,这个函数要求能够尽快结束,同时在其中调度底半部,让底半部在之后来进行后续的耗时工作。
顶半部就不再说明了,就是上面的中断处理函数,只是要求能够尽快处理完成并返回,不要处理耗时工作。
底半部通常使用tasklet或者工作队列来实现。
tasklet的特点和注意事项:
工作队列的特点和注意事项:
⑨ 5.2 Linux中断注册
注册中断最常用的函数是request_irq
第 1个参数 irq 为中断号
第 2 个参数 handler 为要中断服务函数
第 3 个参数 flags为中断标志位包含触发方式,是否共享,是否支持嵌套等
第 4 个参数 name,通常是 设备驱动程序的名称。该值用在 /proc/interrupt 系统文件上
第 5 个参数 dev 中断名称 可作为共享中断时的中断区别参数,也可以用来指定中断服务函数需要参考的数据地址。建议将 设备结构指针作为 dev参数
flags参数定义
注册中断的另一个函数是request_threaded_irq
request_threaded_irq是将中断处理函数线程化执行的接口,其实request_irq也是直接调用的request_threaded_irq,只不过线程化回调thread_fn设置为NULL,不进行中断处理程序线程化处理。
和request_irq的参数有少许差异
handler:表示中断服务例程,指向primary handler 和request_irq的中断处理函数handler类似。中断发生时优先执行primary handler;
如果primary handler 为NULL,且thread_fn不为NULL,那么执行默认primary handler = irq_default_primary_handler。
thread_fn:中断线程化,NULL表示没有中断线程化。thread_fn如果该参数不为NULL,内核会为该irq创建一个内核线程,
当中断发生时,如果handler回调返回值是IRQ_WAKE_THREAD,内核将会激活中断线程,
在中断线程中,该回调函数将被调用,所以,该回调函数运行在进程上下文中,允许进行阻塞操作。
其中
其中
⑩ linux驱动中断,程序运行几个小时后系统崩溃
中断与定时器:
中断的概念:指CPU在执行过程中,出现某些突发事件急待处理,CPU暂停执行当前程序,转去处理突发事件
,处理完后CPU又返回原程序被中断的位置继续执行
中断的分类:内部中断和外部中断
内部中断:中断源来自CPU内部(软件中断指令、溢出、触发错误等)
外部中断:中断源来自CPU外部,由外设提出请求
屏蔽中断和不可屏蔽中断:
可屏蔽中断:可以通过屏蔽字被屏蔽,屏蔽后,该中断不再得到响应
不可平布中断:不能被屏蔽
向量中断和非向量中断:
向量中断:CPU通常为不同的中断分配不同的中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断号对应的地址执行
非向量中断:多个中断共享一个入口地址。进入该入口地址后再通过软件判断中断标志来识别具体哪个是中断
也就是说向量中断由软件提供中断服务程序入口地址,非向量中断由软件提供中断入口地址
/*典型的非向量中断首先会判断中断源,然后调用不同中断源的中断处理程序*/
irq_handler()
{
...
int int_src = read_int_status();/*读硬件的中断相关寄存器*/
switch(int_src){//判断中断标志
case DEV_A:
dev_a_handler();
break;
case DEV_B:
dev_b_handler();
break;
...
default:
break;
}
...
}
定时器中断原理:
定时器在硬件上也以来中断,PIT(可编程间隔定时器)接收一个时钟输入,
当时钟脉冲到来时,将目前计数值增1并与已经设置的计数值比较,若相等,证明计数周期满,产生定时器中断,并
复位计数值。
如下图所示:
Linux中断处理程序架构:
Linux将中断分为:顶半部(top half)和底半部(bottom half)
顶板部:完成尽可能少的比较紧急的功能,它往往只是简单的读取寄存器中的中断状态并清除中断标志后就进行
“登记中断”(也就是将底半部处理程序挂在到设备的底半部执行队列中)的工作
特点:响应速度快
底半部:中断处理的大部分工作都在底半部,它几乎做了中断处理程序的所有事情。
特点:处理相对来说不是非常紧急的事件
小知识:Linux中查看/proc/interrupts文件可以获得系统中断的统计信息。
如下图所示:
第一列是中断号 第二列是向CPU产生该中断的次数
介绍完相关基础概念后,让我们一起来探讨一下Linux中断编程
Linux中断编程:
1.申请和释放中断
申请中断:
int request_irq(unsigned int irq,irq_handler_t handler,
unsigned long irqflags,const char *devname,void *dev_id)
参数介绍:irq是要申请的硬件中断号
handler是向系统登记的中断处理程序(顶半部),是一个回调函数,中断发生时,系统调用它,将
dev_id参数传递给它
irqflags:是中断处理的属性,可以指定中断的触发方式和处理方式:
触发方式:IRQF_TRIGGER_RISING、IRQF_TRIGGER_FALLING、IRQF_TRIGGER_HIGH、IRQF_TRIGGER_LOW
处理方式:IRQF_DISABLE表明中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断
IRQF_SHARED表示多个设备共享中断,dev_id在中断共享时会用到,一般设置为NULL
返回值:为0表示成功,返回-EINVAL表示中断号无效,返回-EBUSY表示中断已经被占用,且不能共享
顶半部的handler的类型irq_handler_t定义为
typedef irqreturn_t (*irq_handler_t)(int,void*);
typedef int irqreturn_t;
2.释放IRQ
有请求当然就有释放了
void free_irq(unsigned int irq,void *dev_id);
参数定义与request_irq类似
3.使能和屏蔽中断
void disable_irq(int irq);//等待目前中断处理完成(最好别在顶板部使用,你懂得)
void disable_irq_nosync(int irq);//立即返回
void enable_irq(int irq);//
4.屏蔽本CPU内所有中断:
#define local_irq_save(flags)...//禁止中断并保存状态
void local_irq_disable(void);//禁止中断,不保存状态
下面来分别介绍一下顶半部和底半部的实现机制
底半部机制:
简介:底半部机制主要有tasklet、工作队列和软中断
1.底半部是想方法之一tasklet
(1)我们需要定义tasklet机器处理器并将两者关联
例如:
void my_tasklet_func(unsigned long);/*定义一个处理函数*/
DECLARE_TASKLET(my_tasklet,my_tasklet_func,data);
/*上述代码定义了名为my_tasklet的tasklet并将其余
my_tasklet_func()函数绑定,传入的参数为data*/
(2)调度
tasklet_schele(&my_tasklet);
//使用此函数就能在是当的时候进行调度运行
tasklet使用模板:
/*定义tasklet和底半部函数并关联*/
void xxx_do_tasklet(unsigned long);
DECLARE_TASKLET(xxx_tasklet,xxx_do_tasklet,0);
/*中断处理底半部*/
void xxx_do_tasklet(unsigned long)
{
...
}
/*中断处理顶半部*/
irqreturn_t xxx_interrupt(int irq,void *dev_id)
{
...
tasklet_schele(&xxx_tasklet);//调度地板部
...
}
/*设备驱动模块加载函数*/
int __init xxx_init(void)
{
...
/*申请中断*/
result = request_irq(xxx_irq,xxx_interrupt,
IRQF_DISABLED,"xxx",NULL);
...
return IRQ_HANDLED;
}
/*设备驱动模块卸载函数*/
void __exit xxx_exit(void)
{
...
/*释放中断*/
free_irq(xxx_irq,xxx_interrupt);
...
}
2.底半部实现方法之二---工作队列
使用方法和tasklet类似
相关操作:
struct work_struct my_wq;/*定义一个工作队列*/
void my_wq_func(unsigned long);/*定义一个处理函数*/
通过INIT_WORK()可以初始化这个工作队列并将工作队列与处理函数绑定
INIT_WORK(&my_wq,(void (*)(void *))my_wq_func,NULL);
/*初始化工作队列并将其与处理函数绑定*/
schele_work(&my_wq);/*调度工作队列执行*/
/*工作队列使用模板*/
/*定义工作队列和关联函数*/
struct work_struct(unsigned long);
void xxx_do_work(unsigned long);
/*中断处理底半部*/
void xxx_do_work(unsigned long)
{
...
}
/*中断处理顶半部*/
/*中断处理顶半部*/
irqreturn_t xxx_interrupt(int irq,void *dev_id)
{
...
schele_work(&my_wq);//调度底半部
...
return IRQ_HANDLED;
}
/*设备驱动模块加载函数*/
int xxx_init(void)
{
...
/*申请中断*/
result = request_irq(xxx_irq,xxx_interrupt,
IRQF_DISABLED,"xxx",NULL);
...
/*初始化工作队列*/
INIT_WORK(&my_wq,(void (*)(void *))xxx_do_work,NULL);
}
/*设备驱动模块卸载函数*/
void xxx_exit(void)
{
...
/*释放中断*/
free_irq(xxx_irq,xxx_interrupt);
...
}