❶ 单片机AT89C51控制的温度控制器,多段温度控制,PID控制,有键盘和显示电路,求完整程序。
AT89C51不带AD,需要AD芯片,这样增加成本不合算,推荐用STC12C5A60AD,我之前一直用AT89S52,STC12C5A60AD和AT89S52完全兼容,而且速度更快,还带AD和PWM,最主要的是便宜,我个人感觉很不错,建议学下……
至于你所说的帮写程序的事我看还是算了,我之前也经常帮别人写程序,但我觉得这不能帮助他们解决问题,我认为帮别人挑出程序的错误之处予以纠正或是写程序思路尚可探讨。
❷ 单片机温度控制器DS18B20的时序问题
for循环表示一个字节的8个bit位;
if(DQ)就是用来判断当前DQ所对应的那条IO是高还是低,若是高,则执行dat |= 0x80,否则不执行;
而dat是采用右移循环的,每右移一位,则dat的最高位会被填零,因此读到IO为高时,需要或0x80来置位dat的最高位.
这个程序虽然能用,但写得不够规范,比如if(DQ),就最好跟一个花括号.
最好从一开始就养成规范化的习惯,对以后的工作非常有帮助.
此外,这个程序可以直接用于DS18B20距离很近的情况下,但若是距离较远,信号在较长的线路上会出现一定的滞后,信号波形的上升率会下降,因此更合理的做法是,将两次给脉冲之间的延时,分成两份,给0之后延时一部分,给1之后再延时一部分,这样可以减少单总线在长距离时的出错率.
❸ 基于单片机的温度控制器的毕业论文
温度相关的毕业设计
·基于单片机的数字温度计的设计
·基于MCS-51数字温度表的设计
·单片机的数字温度计设计
·基于单片机的空调温度控制器设计
·基于数字温度计的多点温度检测系统
·设施环境中温度测量电路设计
·DS18B20数字温度计的设计
·多点温度采集系统与控制器设计
·基于PLC和组态王的温度控制系统设计
·温度监控系统的设计
·用单片机进行温度的控制及LCD显示系统的设计
·单片机电加热炉温度控制系统
·全氢罩式退火炉温度控制系统
·数字温度计的设计
·基于单片机AT89C51的语音温度计的设计
·基于单片机的多点温度检测系统
·基于51单片机的多路温度采集控制系统
·基于单片机的数字显示温度系统毕业设计论文
·基于MCS51单片机温度控制毕业设计论文
·西门子S7-300在温度控制中的应用
·燃气锅炉温度的PLC控制系统
·焦炉立火道温度软测量模型设计
·温度检测控制仪器
·智能温度巡检仪的研制
·电阻炉温度控制系统
·数字温度测控仪的设计
·温度测控仪设计
·多路温度采集系统设计
·多点数字温度巡测仪设计
·LCD数字式温度湿度测量计
·64点温度监测与控制系统
·温度报警器的电路设计与制作
·基于单片机的数字温度计的电路设计
·全氢煤气罩式炉的温度控制系统的研究与改造
·温度检测与控制系统
·红外快速检测人体温度装置的设计与研制
·具有红外保护的温度自动控制系统的设计
·基于单片机的温度测量系统的设计
·数字温度计设计
·DS18B20温度检测控制
·PN结(二极管)温度传感器性能的实验研究
·多功能智能化温度测量仪设计
·软胶囊的单片机温度控制(硬件设计)
·空调温度控制单元的设计
·大容量电机的温度保护——软件设计
·大容量电机的温度保护 ——硬件电路的设计
·基于DS18B20温度传感器的数字温度计设计
·热轧带钢卷取温度反馈控制器的设计
·基于单片机的温度采集系统设计
·多点温度数据采集系统的设计
·基于单片机的数字式温度计设计
·18B20多路温度采集接口模块
·基于单片机的户式中央空调器温度测控系统设计
·单片机电阻炉温度控制系统设计
·基于单片机的电阻炉温度控制系统设计
·基于ARM的嵌入式温度控制系统的设计
·基于DS18B20的多点温度巡回检测系统的设计
·基于单片机的多点无线温度监控系统
·基于MSC1211的温度智能温度传感器
·用集成温度传感器组成测温控制系统
·室内温度控制报警器
·自动温度控制系统
·烤箱温度控制系统
·基于单片机的电加热炉温度控制系统设计
·基于PLC的温度监控系统设计
·基于无线传输技术的室温控制系统设计——温度控制器软件设计
·温度箱模拟控制系统
·基于无线传输技术的室温控制系统设计——温度控制器硬件设计
·数字式温度计的设计
·温度监控系统设计
·基于单片机的电阻炉温度控制系统
·基于plc的温度湿度检测和显示系统设计
·基于单片机的3KW电炉温度控制系统的设计
·腔型肿瘤热疗仪温度控制系统设计
·基于AT89S51单片机的数字温度计设计
·吹塑薄膜挤出机温度控制与检测系统设计
·电加热炉PLC温度自适应控制系统的研究
·高压母线温度自动监测装置的设计
·高压母线温度自动检测装置
·小型热水锅炉单片机温度控制系统
·消毒柜单片机温度控制
·嵌入式系统在多点温度控制中的应用
·单片机温度控制系统
·上下限温度报警器的设计
·基于单片机的饮水机温度控制系统设计
·基于单片机的温度测量系统设计
❹ 基于单片机的热水器温度控制系统
东华理工大学毕业设计(论文)
基于单片机的热水器温度控制
摘 要
温度是日常生活中不可缺少的物理量,温度在各个领域都有积极的意义。很多行业中以及日常生活中都有大量的用电加热设备,如用于加热处理的加热热水器,用于洗浴的电热水器及各种不同用途的温度箱等,采用单片机对它们进行控制具有控制方便、简单、灵活性大等特点,而且还可以大幅提高被控系统的性能,从而能被大大提高产品的质量。因此,智能化温度控制技术正被广泛地应用。
本温度设计采用现在流行的AT89C51单片机为控制器,用PID控制方法,再配以其他电路对热水器的水温进行控制。
关键词:89C51; PID; 温度控制
I
1/41页
东华理工大学毕业设计(论文)
ABSTRACT
Temperature is essential physical in daily life ,and in various fields has positive implications.A lot of businesses and daily lives have a lot of electric heating equipment.Such as electric water heater for bathing and variety of different uses of the temperature boxes. MCU to control them with easy to control,simple,flexibility and other characteristics,also can significantly improve the performance of the controlled system,which can be greatly improved proct quality. Therefore,intelligent temperature control technology is being widely used.
The temperature control design uses the now popular AT89C51 MCU controller,with PID control method, which together with
❺ 求简易温度控制器设计的单片机汇编语言程序
这个程序你可以用来试试。我以前做的。
//温控系统控制程序
//温度传感器:DS18B20
//显示方式:LED
#include<reg51.h>
#defineucharunsignedchar
sbitkeyup=P1^0;
sbitkeydn=P1^1;
sbitkeymd=P1^2;
sbitout=P3^7; //接控制继电器
sbitDQ=P3^4; //接温度传感器18B20
uchart[2],number=0,*pt; //温度值
ucharTempBuffer1[4]={0,0,0,0};
ucharTmax=18,Tmin=8;
uchardistab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xff,0xfe,0xf7};
uchardismod=0,xiaodou1=0,xiaodou2=0,currtemp;
bitflag;
voidt0isr()interrupt1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(number)
{
case0:
P2=0x08;
P0=distab[TempBuffer1[0]];
break;
case1:
P2=0x04;
P0=distab[TempBuffer1[1]];
break;
case2:
P2=0x02;
P0=distab[TempBuffer1[2]]&0x7f;
break;
case3:
P2=0x01;
P0=distab[TempBuffer1[3]];
break;
default:
break;
}
number++;
if(number>3)number=0;
}
voiddelay_18B20(unsignedinti)
{
while(i--);
}
/**********ds18b20初始化函数**********************/
voidInit_DS18B20(void)
{
bitx=0;
do{
DQ=1;
delay_18B20(8);
DQ=0;//单片机将DQ拉低
delay_18B20(90);//精确延时大于480us
DQ=1;//拉高总线
delay_18B20(14);
x=DQ;//稍做延时后如果x=0则初始化成功x=1则初始化失败,继续初始化
}while(x);
delay_18B20(20);
}
/***********ds18b20读一个字节**************/
unsignedcharReadOneChar(void)
{
unsignedchari=0;
unsignedchardat=0;
for(i=8;i>0;i--)
{
DQ=0;//给脉冲信号
dat>>=1;
DQ=1;//给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(4);
}
return(dat);
}
/*************ds18b20写一个字节****************/
voidWriteOneChar(unsignedchardat)
{
unsignedchari=0;
for(i=8;i>0;i--)
{
DQ=0;
DQ=dat&0x01;
delay_18B20(5);
DQ=1;
dat>>=1;
}
}
/**************读取ds18b20当前温度************/
unsignedchar*ReadTemperature(unsignedcharrs)
{
unsignedchartt[2];
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC);//跳过读序号列号的操作
WriteOneChar(0x44); //启动温度转换
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度
tt[0]=ReadOneChar();//读取温度值低位
tt[1]=ReadOneChar();//读取温度值高位
return(tt);
}
voidcovert1(void) //将温度转换为LED显示的数据
{
ucharx=0x00,y=0x00;
t[0]=*pt;
pt++;
t[1]=*pt;
if(t[1]&0x080)//判断正负温度
{
TempBuffer1[0]=0x0c; //c代表负
t[1]=~t[1]; /*下面几句把负数的补码*/
t[0]=~t[0]; /*换算成绝对值*********/
x=t[0]+1;
t[0]=x;
if(x==0x00)t[1]++;
}
elseTempBuffer1[0]=0x0a; //A代表正
t[1]<<=4; //将高字节左移4位
t[1]=t[1]&0xf0;
x=t[0]; //将t[0]暂存到X,因为取小数部分还要用到它
x>>=4; //右移4位
x=x&0x0f; //和前面两句就是取出t[0]的高四位
y=t[1]|x; //将高低字节的有效值的整数部分拼成一个字节
TempBuffer1[1]=(y%100)/10;
TempBuffer1[2]=(y%100)%10;
t[0]=t[0]&0x0f; //小数部分
TempBuffer1[3]=t[0]*10/16;
//以下程序段消去随机误检查造成的误判,只有连续12次检测到温度超出限制才切换加热装置
if(currtemp>Tmin)xiaodou1=0;
if(y<Tmin)
{
xiaodou1++;
currtemp=y;
xiaodou2=0;
}
if(xiaodou1>12)
{
out=0;
flag=1;
xiaodou1=0;
}
if(currtemp<Tmax)xiaodou2=0;
if(y>Tmax)
{
xiaodou2++;
currtemp=y;
xiaodou1=0;
}
if(xiaodou2>12)
{
out=1;
flag=0;
xiaodou2=0;
}
out=flag;
}
voidconvert(chartmp)
{
uchara;
if(tmp<0)
{
TempBuffer1[0]=0x0c;
a=~tmp+1;
}
else
{
TempBuffer1[0]=0x0a;
a=tmp;
}
TempBuffer1[1]=(a%100)/10;
TempBuffer1[2]=(a%100)%10;
}
voidkeyscan()
{
ucharkeyin;
keyin=P1&0x07;
if(keyin==0x07)return;
elseif(keymd==0)
{
dismod++;
dismod%=3;
while(keymd==0);
switch(dismod)
{
case1:
convert(Tmax);
TempBuffer1[3]=0x11;
break;
case2:
convert(Tmin);
TempBuffer1[3]=0x12;
break;
default:
break;
}
}
elseif((keyup==0)&&(dismod==1))
{
Tmax++;
convert(Tmax);
while(keyup==0);
}
elseif((keydn==0)&&(dismod==1))
{
Tmax--;
convert(Tmax);
while(keydn==0);
}
elseif((keyup==0)&&(dismod==2))
{
Tmin++;
convert(Tmin);
while(keyup==0);
}
elseif((keydn==0)&&(dismod==2))
{
Tmin--;
convert(Tmin);
while(keydn==0);
}
xiaodou1=0;
xiaodou2=0;
}
main()
{
TMOD=0x01;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
out=1;
flag=0;
ReadTemperature(0x3f);
delay_18B20(50000); //延时等待18B20数据稳定
while(1)
{
pt=ReadTemperature(0x7f);//读取温度,温度值存放在一个两个字节的数组中
if(dismod==0)covert1();
keyscan();
delay_18B20(30000);
}
}
❻ 论文单片机温度控制系统的(程序清单)!!!!急!!!!
本设计的温度测量及加热控制系统以 AT89S52 单片机为核心部件,外加温度采集电
路、键盘及显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传
感器 DS18B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制
的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到
用户需要的温度,并使其恒定在这一温度。人性化的行列式键盘设计使设置温度简单快
速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论上的控制
算法,使控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理
规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降
低了硬件成本,系统操控简便。
实验证明该温控系统能达到 0.2℃的静态误差,0.45℃的控制精度,以及只有 0.83%
的超调量,因而本设计具有很高的可靠性和稳定性。
关键 词: 单片机 恒温控制 模糊控制
1
引 言
温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于
冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有
些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度
控制系统是非常有价值的。
硬件 系统的设计
1、电路总体原理框图
温度测量及加热系统控制的总体结构如图 1 所示。系统主要包括现场温度采集、实
时温度显示、加热控制参数设置、加热电路控制输出、与报警装置和系统核心 AT89S52
单片机作为微处理器。
图 1:系统总体原理框图
温度采集电路以数字量形式将现场温度传至单片机。单片机结合现场温度与用户设
定的目标温度,按照已经编程固化的模糊控制算法计算出实时控制量。以此控制量控制
固态继电器开通和关断,决定加热电路的工作状态,使水温逐步稳定于用户设定的目标
值。在水温到达设定的目标温度后,由于自然冷却而使其温度下降时,单片机通过采样
回的温度与设置的目标温度比较,作出相应的控制,开启加热器。当用户需要比实时温
度低的温度时,此电路可以利用风扇降温。系统运行过程中的各种状态参量均可由数码
管实时显示。
2、温度采集电路的设计
温度采集电路模块如图 2 示。DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、
温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。其中 DQ 为数字信号输
入/输出端;GND 为电源地;VDD 为外接供电电源输入端。
2
图 2:温度采集电路
DS18B20 中的温度传感器可完成对温度的测量,以 12 位转化为例:用 16 位符号扩展
的二进制补码读数形式提供,以 0.0625℃/LSB 形式表达,其中 S 为符号位。
这是 12 位转化后得到的 12 位数据,存储在 18B20 的两个 8 比特的 RAM 中,二进
制中的前面 5 位是符号位,如果测得的温度大于 0,这 5 位为 0,只要将测到的数值乘
于 0.0625 即可得到实际温度;如果温度小于 0,这 5 位为 1,测到的数值需要取反加 1
再乘于 0.0625 即可得到实际温度。
3、键盘和显示的设计
键盘采用行列式和外部中断相结合的方法,图 3 中各按键的功能定义如下表 1。其
中设置键与单片机的 INT 0 脚相连,S 0 −−S 9 、YES、NO 用四行三列接单片机 P0 口,REST
键为硬件复位键,与 R、C 构成复位电路。模块电路如下图 3:
表 1:按键功能
按键 键名 功能
REST 复位键 使系统复位
RET 设置键 使系统产生中断,进入设置状态
S 0 −−S 9 数字键 设置用户需要的温度
YES 确认键 用户设定目标温度后进行确认
NO 清除键 用户设定温度错误或误按了 YES 键后使用
3
图 3 键盘接口电路
显示采用 3 位共阳 LED 动态显示方式,显示内容有温度值的十位、个位及小数点后
一位。用 P2 口作为段控码输出,并用 74HC244 作驱动。P1.0—P1.2 作为位控码输出,
用 PNP 型三极管做驱动。模块电路如下图 4:
4、加热控制电路的设计
图 4 显示接口电路
用于在闭环控制系统中对被控对象实施控制,被控对象为电热杯,采用对加在电热
杯两端的电压进行通断的方法进行控制,以实现对水加热功率的调整,从而达到对水温
控制的目的。对电炉丝通断的控制采用 SSR-40DA 固态继电器。它的使用非常简单,只
要在控制端 TTL 电平,即可实现对继电器的开关,使用时完全可以用 NPN 型三极管接
成电压跟随器的形式驱动。当单片机的 P1.3 为高点平时,三极管驱动固态继电器工作
接通加热器工作,当单片机的 P1.3 为低电平时固态继电器关断,加热器不工作。控制
电路图如下图 5:
4
图 5 加热控制电路
5、报警及指示灯电路的设计
当用户设定的目标温度达到时需用声音的形式提醒用户,此时蜂鸣器为三声断续的
滴答滴答的叫声。在本系统中我们为用户设计了越限报警,当温度低于用户设置的目标
温度 10 度或高于 10 度时蜂鸣器为连续不断的滴答滴答叫声。当单片机 P1.7 输出高电
平时,三极管导通,蜂鸣器工作发出报警声。P1.7 为低电平时三极管关断,蜂鸣器不
工作。
D1 为电热杯加热指示灯,P1.5 低电平有效;D0 为检测到 DS18B20 的指示,高电平
有效;D10 为降温指示灯,低电平有效。报警及指示灯电路如下图 6 示:
图 6 报警及指示灯电路
5
软 件系统的设计
系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。
1、主程序模块
主程序主要完成加热控制系统各部件的初始化和实现各功能子程序的调用,以及实
际测量中各个功能模块的协调在无外部中断申请时,单片机通过循环对外部温度进行实
时显示。把设置键作为外部中断 0,以便能对数字按键进行相应处理。主程序流程图如
下图 7:
6
图 7 主程序流程图
7
2、功能实现模块
以用来执行对固态继电器及电热杯的控制。功能实现模块主要由中断处理子程序、
温度比较处理子程序、键盘处理子程序、显示子程序、报警子程序等部分组成。键盘显
示及中断程序流程图如下图 8:
3、运算控制模块
图 8 键盘、显示、中断 子程序流程图
该模块由标度转换、模糊控制算法,及其中用到的乘法子程序。
3.1 标度转换
16
式中 A 为二进制的温度值, A0 为 DS18B20 的数字信号线送回来的温度数据。
8
单片机在处理标度转换时是通过把 DS18B20 的信号线送回的 16 位数据右移 4 位得
到二进制的温度值。其小数部分通过查小数表的形式获取。程序流程图如下图 9:
开始
将28H低4位与29H高4位组合成
一个字节
将合成的字节(整数部分)送29H
单元
将29H单元低4位送A
给DPTR赋常数表格2首地址
将查到的数值(即小数部分)送
30H单元
结束
3.2 模糊控制算法子程序
图 9 标度转换子程序流程图
该系统为一温度控制系统,由于无法确切确定电炉的物理模型,因而无法建立其数
学模型和传递函数。加热器为一惯性系统,我们采用模糊控制的方法,通过多次温度测
量模糊计算当用户设定目标温度时需提前关断加热器的温度,利用加热器自身的热惯性
使温度上升到其设定温度。每隔 5 摄氏度我们进行一次温度测量,并当达到其温度时关
断加热器记录下因加热器的热惯性而上升的温度值。从而可以建立热惯性的温度差值
表,在程序中利用查表法,查出相应设定温度对应的关断温度。通过实验数据我们可以
看出,当水温从 0℃加热到 50℃这段温度区域,其温度惯性曲线可近似成线性的直线,
水温从 50℃加热到 100℃这段温度惯性曲线可近似成另一条线性的直线段。通过对设置
的目标温度与温控系统监测温度进行差值处理就可近似的求出单片机的提前关断温度。
程序流程图如图 10:
9
4.源程序见附录[2]
图 10 模糊控制算法子程序流程图
设计 总结
我们的温度控制系统是基于 AT89S52 单片机的设计方案,她能实时显示当前温度,
并能根据用户的要求作出相应的控制。此系统为闭环系统,工作稳定稳定性高,控制精
度高,利用模糊控制算法使超调量大大降低。软件采用模块化结构,提高了通用性。本设
计的目的不仅仅是温度控制本身,主要提供了单片机外围电路及软件包括控制算法设计
的思想,应该说,这种思想比控制系统本身更为重要。
1、设计所达到的性能指标
1.1 温控系统的标度误差
我们将标准温度计和温控系统探头放人同一容器中,选定若干不同的温度点,记
录下标准温度计显示的温度和温控系统显示的温度进行比较。测量数据如下表 2 所示:
表 2 标准温度计测量的温度和温控系统显示的温度
标准温度计和温控系统显示的温度(℃)
标准温度计 16.9 47.7 57.8 63.0 72.8 85.1 90.9
温控系统 16.5 48.0 58.3 62.9 73.0 85.5 90.5
差值比较 -0.4 0.3 0.5 0.1 0.2 0.4 -0.4
标度误差 1.5%
10
1.2 温控系统的静态误差
通过测量在不同的温度点同标准温度的温度差来确定温控系统的静态误差。其测量
数据如下表 3:
表 3 标准温度和温控系统显示的温度
标准温度和温控系统显示的温度(℃)
标准温度 26.0 37.0 46.0 60.0 70.0 83.0
系统显示值 25.7 36.4 46.1 59.6 70.0 83.3
差值 -0.3 -0.6 -0.1 -0.4 0 0.3
静态误差 0.18℃
1.3 温控系统的控制精度
通过设定不同的温度值,使加热器加热,待温度稳定时记录各温度点的温度计数据
和温控系统的显示值。其记录数据如下表 4:
温度计读数和温控系统显示的温度(℃)
设定温度
值 20.0 28.0 35.0 45.0 55.0 75.0 87.0 91.0
系统显示
值 20.5 27.7 34.4 45.1 54.1 74.9 86.1 91.2
差值 0.5 -0.3 -0.6 0.1 -0.9 -0.1 -0.9 0.2
控制精度 0.45℃
超调量 0.83%
2、结果分析论述
我们的系统完全满足设计要求,静态误差方面可以达到 0.18℃的误差,在读数正确
方面与标准温度计的读数误差为 1.5%,对一般的工业生产完全可以采用我们的设计。
该系统具有较小的超调值,超调值大约为 0.83%左右。虽然超调为不利结果,但另
一方面却减小了系统的调节时间。从其数据表可以看出该系统为稳定系统。
3、设计方案评价
3.1 优点
在硬件方面:本设计方案采用了单总线型数字式的温度传感器,提高了温度的采集
精度,节约了单片机的口线资源。方案还使用仅一跟口线就可控制的美国生产的固态继
电器 SSR—40DA 作加热控制器件,使设计简单化,且可靠性强。在控制精度方面,本设
计在不能确定执行机构的数学模型的情况下,大胆的假设小心的求证,利用模糊控制的
算法来提高控制精度。
在软件方面:我们采用模块化编程,思路清晰,使程序简洁、可移植性强。
3.2 缺点
本设计方案虽然采用了当前市场最先进的电子器件,使电路设计简单,但设计方案
造价高。本系统虽然具有较小的超调量,但加大了调节时间。如果需要更高的控制精度,
则我们的模糊控制将不适应,需修改程序。
11
3.3 方案的改进
在不改变加热器容量的情况下,为减小调节时间,可以实行在加热快达到设定温度
时开启风扇来减小热惯性对温度的影响的措施。在控制精度上可采用先进的数字 PID
控制算法,对加热时间进行控制,提高控制精度。
可以改进控制系统使能同 PC 联机通信,以利用 PC 的图形处理功能打印显示温度曲
线。AT89S52 串行口为 TTL 电平,PC 串行口为 RS232 电平,使用一片 MAX232 作为电
平转换驱动。
参考 文献
[1] 李广弟 单片机基础 北京:北京航空航天大学出版社,2001
[2] 王福瑞 单片微机测控系统设计大全 北京:北京航空航天大学出版社,1997
[3] 赵茂泰 智能仪器原理及应用(第 2 版) 北京:电子工业出版社,2004
[4] 赖寿涛 微型计算机控制技术 北京:机械工业出版社,2000
[5] 沙占友 模拟与数字万用表检测及应用技术 北京:电子工业出版社 1999
12
附 录
附录[1]使用说明书
按 键功能说明
数字键:按 SET 键后,按相应的数字键(0~9)可对温度进行设置,所设置的温
度将实时显示在 LED 显示器上;
SET 键:按 SET 键可对温度的十位、个位以及小数部分进行设置;
YES 键:设置好温度后按 YES 键,系统将据你所设置的温度(须大于当前实际
温度)对水进行加热;
NO 键:若误按了 SET 键,或对输入有误,可按 NO 键进行取消;
RST 键:对系统进行复位。
指示 灯及报警器说明
红 灯:加热状态标志;
绿 灯:温度传感器正常工作标志;
蓝 灯:保温状态标志;
报警器:功能①当水温达到预设值时报警提醒;
功能②当水温达到或超越上、下限时报警提示。
13
附录[2]设计总电路
14
附录[3]程序清单
TEMPER_L EQU 29H ;用于 保存读出温度的低 8 位
TEMPER_H EQU 28H ;用于 保存读出温度的高 8 位
FLAG EQU 38H ;是否 检测到 DS 18B20 标志位
DAYU EQU 44H ;设温 >实温
XIYU EQU 45H ;设温 <实温
DEYU EQU 46H ;设温 =实温
GAOLE EQU 47H ;水温 高于最高温度
DILE EQU 48H ;水温 低于最低温度
A_bit EQU 79h ;数码 管个位数存放内存位置
B_bit EQU 7Ah ;数码 管十位数存放内存位置
C_BIT EQU 78H ;数码 管小数存放内存位置
ORG 0000H
AJMP START
ORG 0003H
AJMP PITO
ORG 0030H
START: CLR P1.7
CLR P1.3
CLR P1.5
SETB P1.6
MOV R4, #00H
MOV SP, #60H ;确立堆栈区
MOV PSW, #00H ;
MOV R0, #20H ;RAM 区首地址
MOV R7, #60H ;RAM 区单元个数
ML: MOV @R0, #00H
INC R0
DJNZ R7, ML
CLR IT0
MAIN:LCALL GET_TEMPER ;调用读温度子程序 进行温度显示,这里我们考
;虑用网站提供的两位数码管来显示温度
;显示范围 00 到 99 度,显示精度为 1 度
;因为 12 位转化时每一位的精度为 0.0625 度,
;我们不要求显示小数所以可以抛弃 29H 的低 4
;位将 28H 中的低 4 位移入 29H 中的高 4 位,这
;样获得一个新字节,这个字节就是实际测量获
;得的温度
LCALL DISPLAY ;调用数码管显示 子程序
JNB 00H, MAIN
CLR 00H
15
MOV A, 38H
CJNE A, #00H, SS
AJMP MAIN
SS: LCALL GET_TEMPER
LCALL DISPLAY;调用 数码管显示子程序
LCALL BIJIAO
LCALL XIAOYU
LCALL JIXIAN
JNB DEYU ,LOOP
CLR P1.3 ;关加热器
SETB P1.6 ;关 蓝灯
SETB P0.7 ;关风扇
CLR DEYU
LCALL GET_TEMPER
LCALL DISPLAY
AJMP TT2
LOOP:JNB DAYU ,TT
CLR DAYU
SETB P1.3
SETB P1.6
SETB P0.7
CLR P1.7
LCALL GET_TEMPER
LCALL DISPLAY
AJMP TT2
TT:JNB XIYU, TT2
CLR XIYU
CLR P0.7
CLR P1.6
CLR P1.3
CLR P1.7
LCALL GET_TEMPER
LCALL DISPLAY
TT2:MOV A, 29H
CLR C
CJNE A, 50H, JX
MOV A , 30H
CLR C
CJNE A, 51H, JIA1
AJMP YS2
JIA1:JC JX
MOV A, 51H
MOV 52H, A
ADD A, #2
16
MOV 52H, A
CLR C
MOV A, 30H
CJNE A, 52H, JIA2
JIA2:JNC JX
YS2:SETB P1.7
CLR P1.6
MOV R5, #20H
YS:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS
CLR P1.7
SETB P1.6
MOV R5, #20H
YS1:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS1
YS3:SETB P1.7
CLR P1.6
MOV R5, #20H
YS0:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS0
CLR P1.7
SETB P1.6
MOV R5, #20H
YS01:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS01
YS4:SETB P1.7
CLR P1.6
MOV R5, #20H
YS02:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS02
CLR P1.7
SETB P1.6
MOV R5, #20H
YS03:LCALL GET_TEMPER
LCALL DISPLAY
DJNZ R5, YS03
JX: MOV A, 29H
CJNE A, 31H, JX00
JX01:SETB P1.7
17
CLR C
AJMP LAST
JX00:JC JX01
CLR P1.7
CJNE A,
JX02:SETB P1.7
CLR C
AJMP LAST
JX03:JNC JX02
32H,
JX03
CLR P1.7
LAST:LCALL GET_TEMPER
LCALL DISPLAY
AJMP SS
;***************************常数表格区**** ******************************************
TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8 H,80H ;0-8
DB 90H,88H,83H,0C6H,0A1H,86H,8EH,0FFH ,0CH ;9,A,B,C,D,E,F,灭,p.
TAB1:DB40H,79H,24H,30H,19H,12H,02H,78H,00H ,10H, ;0.--9.
TAB2:DB 0, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, ;小数点
;*************************1ms 延时程序*************** *********************
;************************* ****中断服务程序* *********************************
; 完成按键识别,键值求取,按键实时显示 等功能;
;************************* **************** **********************************
PITO: PUSH ACC
PUSH PSW
SETB RS0
CLR RS1
SET B 00H
MAIN1: MOV R7 , #03H ;显示位数为 2 位
MOV R0, #7AH
MOV 78H, #00H
MOV 79H, #00H
MOV 7AH, #00H
KK: LCALL DIR
LCALL KEY1
LOOP1:CJNE A, #11, LOOP2
AJMP LAST0
LOOP2:CJNE A, #12, LOOP3
LJMP LAST3
LOOP3: CJNE A, #10, L4
MOV A, #00H
L4: MOV @R0, A
LCALL DIR
DEC R0
DJNZ R7, KK
18
SETB 01H
LAST0:JNB 01H, KK
LOOP4:LCALL KEY1
CJNE A, #12, LOOP5
AJMP LAST3
LOOP5:CJNE A, #11, LOOP4
LAST1:LCALL DIR
LCALL MUN
LCALL JD
LCALL BIJIAO
LAST3:POP PSW
POP ACC
RETI
;******************精度控制 子程序********** ******
JD: PUSH ACC
PUSH PSW
CLR C
MOV A, 38H
MOV 50H, A
MOV A, 39H
MOV 51H, A
CJNE A, 29H, L001
L001:JC LAST02 ;设温<实温,则跳出
MOV A, 29H
MOV 41H, A
MOV A, 38H
CJNE A, #25, L002
L003:CLR C ;0 <T<25
SUBB A, 41H
CJNE A, #3, L004
L005:MOV A, 30H
ADD A, #5 ;0<T<25, 差值小于 3 度
DA A
JNB ACC.4, L0051
ANL A, #0FH
SETB C
L0051:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
LAST02: AJMP LAST2
L004:JC L005
MOV A, 39H
19
SUBB A, #0
DA A
MOV 39H, A
JNC L0041
DEC 38H
L0041:MOV A, 38H
SUBB A, #2 ;0<T<25, 差值大 于 3 度
MOV 38H, A
AJMP LAST2
L002:JC L003
CJNE A, #50, L006
L007:CLR C ;25<T<5 0
SUBB A, 41H
CJNE A, #3, L008
L009:MOV A, 30H
ADD A, #1
DA A
JNB ACC.4, L0091
ANL A, #0FH
SETB C
L0091:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L008:JC L009
MOV A, 39H
SUBB A, #0
MOV 39H, A
MOV A, 38H
SUBB A, #2
MOV 38H, A
AJMP LAST2
L006:JC L007
CJNE A, #65, L010
L011:CLR C
SUBB A, 41H
CJNE A, #3, L012
L013:MOV A, 30H
ADD A, #2
JNB ACC.4, L00131
ANL A, #0FH
SETB C
L00131:MOV 39H, A
20
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L012:JC L013
MOV A, 39H
SUBB A, #0
MOV 39H, A
MOV A, 38H
SUBB A, #2
MOV 38H, A
AJMP LAST2
L010:JC L011
CJNE A, #90, L016
L017:CLR C
SUBB A, 41H
CJNE A, #2, L014
L015:MOV A, 30H
ADD A, #0
JNB ACC.4, L00151
ANL A, #0FH
SETB C
L00151:MOV 39H, A
MOV A, 29H
ADDC A, #1
MOV 38H, A
AJMP LAST2
L014:JC L015
CLR C
MOV A, 38H
SUBB A, #1
MOV 38H, A
AJMP LAST2
L016:JC L017
LAST2:POP PSW
POP ACC
RET
;*******************************键扫描** ************************************
KEY1:LCALL KS1 ;键 扫描
JNZ LK1
LCALL DIR
AJMP KEY1
LK1:LCALL DIR
LCALL DIR
21
LCALL KS1
JNZ LK2
LCALL DIR
AJMP KEY1
LK2:MOV R2, #0FEH ;确定键值
MOV R4, #01H
MOV A, R2
LK4:MOV P0, A
NOP
MOV A, P0
JB ACC.3, LONE
MOV A, #00H
AJMP LKP
LONE:JB ACC.4 , LTWO
MOV A, #03H
AJMP LKP
LTWO:JB ACC.5, LTHR
MOV A, #06H
AJMP LKP
LTHR:JB ACC.6, NEXT5
MOV A, #09H
AJMP LKP
NEXT5:INC R4
MOV A, R2
JNB ACC.2 ,KND
RL A
MOV R2, A
AJMP LK4
KND:AJMP KEY1
LKP: ADD A, R4
PUSH ACC
LK3:LCALL DIR
LCALL KS1
JNZ LK3
POP ACC
RET
KS1: PUSH PSW
MOV P0, #78H
NOP
MOV A, P0 ;判断有无键按下
CPL A
ANL A, #78H
POP PSW
22
RET
;*************求设置温度的二 进制代码,值保存在 38H 单元**************
MUN: PUSH PSW
MOV R0, #7AH ;求键值
MOV A, @R0
SWAP A
DEC R0
ADD A, @R0
MOV R1, A
ANL A, #0F0 H
SWAP A
MOV B, #10
MUL AB
MOV R2, A
MOV A, R1
ANL A, #0FH
ADD A, R2
MOV 38H, A
MOV R0, #78H
MOV 39H, @R0
POP PSW
RET
;*************比较实际温度和设置温度的大小 并设置相应的标志位***********
BIJIAO:MOV A, 29 H ;实际温度
MOV 40H, A