‘壹’ 51单片机控制的超声波测距仪程序
希望对你有帮助
//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
i=0;
flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0
while(1) //程序循环
{
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;
while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断
if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
}
distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
pai_xu();
distance_data=distance[1];
a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0x7f;flag++;break;
case 0x01:P0=shi;P2=0xbf;flag++;break;
case 0x02:P0=;P2=0xdf;flag=0;break;
}
}
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;
_data=SEG7[_data];
shi_data=SEG7[shi_data]&0x7f;
ge_data =SEG7[ge_data];
EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}
‘贰’ 求大神帮我用C语音写一个51单片机超声波的程序
#包括:QUOT;为reg51.h&QUOT;
SBIT P10 = P1 ^ 0;
无效initTimer(无效)
TMOD =为0x10; TH1 = 0X0B;
TL1 = 0xE0指令;
定时器无效(无效)中断3
TH1 = 0X0B;
TL1 = 0xE0指令;
P10 =10页;
无效的主要(无效)
initTimer();
TR1 = 1;
ET1 = 1;
EA = 1;
而(1);
}
‘叁’ 求C51单片机程序,关于超声波测距仪
看下这个
原文http://www.elecfans.com/article/87/82/2009/20091219139294.html
基于单片机的倒车防撞预警系统设计和实现
0 引 言
汽车倒车防撞预警系统即是俗称的倒车雷达,是汽车泊车辅助装置。在汽车倒车时,倒车雷达采用超声波测距原理探测汽车尾部离障碍物的距离,当汽车尾部离障碍物的距离达到探测范围时,倒车雷达通过数码管实时动态显示距离。当汽车尾部离障碍物的距离达到设定的安全警告值时,倒车雷达发出报警声,以警示驾驶员,辅助驾驶员安全倒车。现在生产的中高档小轿车大多数都配置有倒车雷达,而出于节省成本等方面的考虑,经济型小轿车、大客车等其他车辆都没有配置倒车雷达。有市场需求的产品,必然会带动产品的开发设计。倒车雷达电路种类较多,本文介绍基于单片机控制的倒车雷达系统,该系统采用通用型单片机作为控制电路,方便系统功能扩展。系统电路主要采用集成器件构成,外围元件少,电路简洁、调试方便、成本低,利于商品化生产。
1 系统组成及工作原理
倒车防撞预警系统由四路收发一体封闭(防水)型超声波传感器及其超声波发射与回波接收电路、超声波电信号放大电路、单片机控制电路、LED数码管显示电路和蜂鸣器声音报警电路组成。系统组成框图如图1所示。
当汽车倒车时由倒车换挡装置自动接通系统电源,系统上电复位,进入工作状态。单片机编程产生一串40 kHz的矩形脉冲电压,经四选一模拟开关加到超声波发射与回波接收电路,经放大驱动超声波传感器发射出超声波,同时单片机开始计时。发射出的超声波碰到障碍物后形成反射波,部分反射波返回作用于超声波传感器,经超声波传感器的声/电转换,变成微弱的电信号,该微弱的电信号经放大、整形产生负跳变电压,向单片机发出中断申请。单片机收到中断申请的信号后,立即响应中断,执行外部中断服务程序,停止计时,得到超声波发送和返回的时间T,计算出发射点离障碍物的距离S,即:S=(C·T)/2。C是超声波在空气中的传播速度,在常温25℃时,C约为346 m/s。若发射出的超声波在测距范围内未遇到障碍物,直到单片机定时中断产生,执行定时中断服务程序,选择下一路,依次按后左路、后左中路、后右中路、后右路的顺序继续发射和接收超声波,并经过计算处理。四路探测处理完毕,选择四路中测出的最小距离值通过LED数码管显示出来。当最小距离值小于预先设定的报警距离时,单片机接通蜂鸣器的电源,蜂鸣器发出报警声。若四路探测无回波中断申请,则显示“-.--”,表明在安全距离内没有障碍物,再继续下一轮的循环探测处理。
2 系统硬件电路的设计
2.1 超声波发射与回波接收电路
超声波发射与回波接收电路的主要作用是提高驱动超声波传感器的脉冲电压幅值,有效地进行电/声转换,增大超声波的发射距离,并通过收发一体的超声波传感器将返回的超声波转变成微弱的电信号。超声波发射与回波接收电路如图2所示(画出一路,其他三路与该路一样)。
EFR40RS是收发一体封闭(防水)型超声波传感器,其中心频率f0=(40.0±1.0)kHz,-3 dB带宽1 kHz。驱动电压峰一峰值要求60~150 V。CD4052是双路四选一模拟开关,单片机的P3.4和P3.5端口输出选通信号,单片机的P3.3端口输出一串40 kHz的脉冲电压,通过CD4052的X路加到选通的开关三极管Q1基极,经脉冲变压器T1升压至100 VP-P左右,驱动超声波传感器EFR40RS发射超声波。发射时的脉冲电压幅值大小直接影响测距的远近,应采用超声波专用的脉冲变压器。反射回的超声波经原收发一体封闭型超声波传感器变成毫伏级的一串脉冲电信号。由于回波电信号的幅值小,VD3和VD4二极管截止,该信号不会通过T1变压器副边线圈形成短路。VD1和VD2二极管也截止,所以回波电信号经R1和C1,通过CD4052的Y路送到超声波电信号放大与整形电路。R1和VD1,VD2组成双向限幅电路,避免发射时的大信号造成超声波放大与整形电路阻塞,甚至损坏电路。
2.2 超声波电信号放大电路
超声波电信号放大电路采用集成电路CX20106A构成。CX20106A是日本索尼公司生产的红外遥控信号接收集成电路。通过外部所接电阻,将其内部带通滤波电路的中心频率f0设置为40 kHz,就可以接收放大超声波电信号,并整形输出负脉冲电压。
应用电路如图3所示。1脚是超声波电信号输入端,2脚与地之间连接RC串联网络,是内部前置放大电路负反馈网络的组成部分。电阻R5的数值确定前置放大电路的增益。R5电阻值减小,负反馈减弱,放大倍数增大;反之,则放大倍数减小。3脚与地之间连接检波电容C3,适当改变电容C3的大小,可以改变超声波电信号放大和整形电路的灵敏度和抗干扰能力。C3电容量大,灵敏度低,抗干扰能力强;C3容量小,灵敏度高,抗干扰能力弱,易造成误动作。5脚与电源间接入一个电阻,用以设置内部带通滤波电路的中心频率f0。
当R6=200 kΩ时,f0=40 kHz。6脚与地之间接一个积分电容,标准值为330 pF。如果该电容值取得太大,会使探测距离变短。7脚是电路集电极开路输出端,R7是该引脚的上拉电阻。集成电路CX20106A无信号输入时,7脚输出高电平,当输入的超声波电信号经放大、整形后,7脚输出一个负脉冲电压。
2.3 单片机控制电路和显示、报警电路
电路如图4所示。由于系统用到单片机的输入/输出端口不多,在不考虑功能扩展时,从功能够用和低成本的角度考虑,采用AT89C2051单片机作为控制电路的核心器件。AT89C2051单片机共有20个引脚,其中有15个I/O端口(P3.6无引出脚)。两个16位定时器/计数器,其体积小、价格低。采用12 MHz高精度的晶振,以获得较稳定的时钟频率,减小测量误差。单片机的P3.3端口周期性的输出一串40 kHz的矩形脉冲,通过双路四选一模拟开关CD4052周期性地加到四路超声波发射与回波接收电路。单片机的P3.4和P3.5端口输出双路四选一模拟开关CD4052的选通信号。单片机的P3.2端口为外部中断0中断申请信号输入端。三位LED数码管采用动态扫描显示。U4的小数点常亮,U4的单位为m,U5的单位为dm,U6的单位为cm。采用有源蜂鸣器作为报警发音器件,一是器件成本低,二是便于动态扫描显示的软件编程。
3 系统软件的设计
系统软件采用模块化设计,方便扩展移植。采用汇编语言编程。主要有主程序、T0中断服务程序、外部中断0服务程序、超声波发生子程序。
3.1 主程序
本系统有四路测距通道,采用分时工作,按后左一后左中一后右中一后右顺序循环测距。每一路发射超声波后的等待外部中断时间应大于超声波在最大有效探测距离内往返时间。所以按最大有效探测距离可以估算出最短的循环间隔时间。因为超声波在空气中传播能量会不断衰减,所以超声波测距存在最大有效探测距离。这最大有效探测距离与多种因数有关:
与超声波传感器性能的好坏、与驱动超声波传感器的脉冲电压幅值(功率)的大小、障碍物大小和形状、障碍物吸波特性以及反射波与入射波之间的夹角、与超声波放大和整形电路的灵敏度等有关。设定最大有效探测距离为8 m(收发一体封闭型超声波传感器比较难达到,实际上也没有必要探测很远的障碍物,只是设计留有裕量。由于显示位数有限,也必须对最大探测距离做限制),则循环工作的间隔时间Tm=2S/C=2×8/346A46 ms,加上避免接收超声波传感器余振的延时和程序执行时间,留足裕量,设定Tm△56 ms。
主程序流程图如图5所示。首先是对系统初始化。端口p1.0、P3.3置0;设置堆栈,中断允许总控制位EA允许中断(EA=1);允许外部中断0中断(EX0=1),采用边沿触发方式(IT0=1);设置定时器T0允许中断(ET0=1),以16位工作方式定时约56 ms;设置定时器T1以16位工作方式定时/计数,计数初值0000H,然后启动T0定时。设置显示数据初值为三位BCD码999(cm),对应字形段码显示“---”。四路探测处理完毕后,将四组数据中的最小值送入显示缓冲区,通过LED数码管显示。同时该值与设定的100 cm值比较,若四组数据中的最小值小于100 cm,P3.7端口置0,Q2三极管导通,有源蜂鸣器得电发出报警声。
由于单片机采用12 MHz的晶振,1个机器周期为1μs,所以计数器每计一个数就是1μs,定时器T1工作模式设置为16位定时/计数器模式,则其最大定时65.536 ms。由于定时器T0每56 ms产生中断,执行T0中断服务程序时停止T1计时,所以T1计时不会产生溢出中断。一轮四路探测处理完毕所用时间大约是56 ms×4=224 ms,用时很短,而倒车速度又比较慢,所以可以做到实时动态显示。
3.2 T0中断服务程序
T0中断服务程序流程图如图6所示。每隔56 ms分别按后左→后左中→后右中→后右顺序选通下一路超声波发射与回波接收电路,调用超声波发生子程序,送出16个40 kHz的超声波脉冲电压,定时器T1开始计时,定时器T0开始定时56 ms,使每路工作56 ms。
为了避免接收到超声波传感器余振的直射波产生的中断申请,延时2.8 ms后,才允许外部中断0中断,等待接收返回的超声波信号。所以,最小探测距离(盲区)Smin=Ct/2=346×0.002 8/2△0.48 m。四路探测处理完毕,将四路中最小值送入显示缓冲区。若在四路探测中有些路在有效探测范围内发射的超声波未遇障碍物,无返回波,外部中断0不产生中断申请信号,或者是进入探测盲区,外部中断0产生的中断申请不被受理,则定时器T1计时到定时器T0产生中断,在T0中断服务程序中,用三位BCD码999(三位十进制数最大值999 cm)置够四组数据。若显示缓冲区的四组数据都是999时,则对应字形段码显示“---”。倒车伊始,LED数码显示器就显示“-.--”,表明在安全距离内没有障碍物;若发出报警声后,又显示“-.--”,表明进入了探测盲区。
3.3 外部中断0服务程序
外部中断O服务程序流程图如图7所示。单片机一旦接收到返回超声波信号(即INT0引脚由高电平跳变为低电平),立即进入外部中断0服务程序。首先停止定时器T1计时,禁止外部中断0中断。然后将定时器T1中的数N,也即将超声波往返所用的时间N(单位:μs),按式S=CT/2=(346 x N×10-6)/2=173×N÷10 000计算,即得被测物的距离(单位:cm),将计算结果以百位、十位、个位BCD码方式送入比较大小的缓冲区,以备比较大小使用。然后等待定时器T0定时56 ms中断的产生,继续下一路的探测处理。
3.4 超声波发生子程序
超声波发生子程序通过P3.3端口发送16个周期是25μs(即频率40 kHz,1个周期内高电平持续13μs、低电平持续12 μs)的矩形脉冲电压。脉冲串个数在10~20个比较合适。脉冲个数太少,发射强度小,探测距离短;脉冲个数太多,发射持续时间长,在离障碍物距离近时,脉冲串尚未发射完毕,先发射出去的脉冲产生的回波就到达接收端,影响测距结果,造成测距盲区增大。
4 实现应用分析
本系统在实验室条件下进行了可行性的研究设计,要实际应用中就必须考虑测量精度和工作稳定性的问题。因此,本系统可采取几项措施来提高测量精度和工作稳定性。
(1)超声波的传播速度与温度有关。为了适应不同环境温度下的测距需要,提高测量精度,硬件电路上可增加检测车外环境温度的环节。单片机根据实测的温度值,再计算确定超声波的传播速度,即C=331.4+0.6lt。t是环境温度。或者在不增加硬件成本情况下,可考虑通过实验数据分析,找到测量值与实际值偏差特点和规律,通过软件编程对测量数据进行校正处理。
(2)软件设计中采用数字滤波中的算术平均滤波程序对每个测距点进行连续多次测量,取平均值作为该测距点的测量数据,以提高数据采样的可靠性。要尽量减小探测盲区,所设定的延时时间可根据实际所用超声波传感器余振时间而定,可在实际调试中确定最小延时时间。
(3)倒车雷达安装在车上,倒车雷达的工作环境非常恶劣,汽车倒车工作时,高压点火产生很强的电磁辐射,会影响电路正常工作。所以在硬件及软件方面要考虑采取抗干扰措施,提高系统工作的可靠性。如用金属壳屏蔽电路,采用屏蔽线连接超声波传感器;在满足测量距离的情况下,可适当调大超声波电信号放大和整形电路中检波电容C3的容量。硬件上可增加“看门狗”电路,软件设计添加指令冗余、软件陷阱、或设置软件“看门狗”,防止程序“跑飞”或者进入死循环。对于驾驶员来说,倒车时主要关心的是车后方有无障碍物、以及障碍物离车大约有多远等问题。由于车子制动时存在惯性,倒车遇到障碍物时,驾驶员总要提前制动。考虑性价比,倒车雷达测量精度不必很高。但从倒车安全考虑,此时的测量显示值宁大勿小。
5 结 语
本系统充分利用了单片机的内部资源,用软件编程产生超声波矩形脉冲,代替硬件的超声波发生电路,节省了硬件成本。采用一块集成器件实现超声波接收放大和整形,避免了采用多级集成运放组成高增益放大电路易产生自激等问题。实验表明设计可行。在不增加硬件成本时,通过完善软件设计,可提高系统测量精度和工作的可靠性,能够满足使用要求。在考虑功能扩展时,可以采用带“看门狗”的AT89S52单片机,以增加扩展端口。在超声波测距的基础上,如可增加防盗报警功能、车载蓄电池电压检测功能等,若增加微型摄像头和小型液晶显示器,便成为可直接观察车后方的可视倒车雷达。本系统实用性强,性价比高。
‘肆’ 求超声波发生器的单片机源代码
//设计:ch314156
//模块使用方法:一个控制口发一个10US以上的高电平,就可以在接收口等待高电平输出.
//一有输出就可以开定时器计时,当此口变为低电平时就可以读定时器的值,此时就为此次测
//距的时间,方可算出距离.如此不断的周期测,就可以达到你移动测量的值了
//波特率9600(晶振12M)
#include <reg52.h>
#include <intrins.h> //调用 _nop_(); 延时函数
#define uchar unsigned char
#define uint unsigned int
sbit trigger=P2^0; //触发引脚
sbit rx=P2^1; //接收引脚
sbit key=P3^6; //按键
unsigned char key_scan(void);
uchar chaoshengbo(void);
void uart_init(void);
void uart(uchar distance);
void chaoshengbo_init(void);
uchar distance; //距离
void main()
{
uart_init(); //串口初始化
chaoshengbo_init(); //超声波初始化
uart('A') ; //串口发送'A'
while(1)
{
if (key_scan() == 1) //按键按下
{
distance = chaoshengbo(); //超声波测距
uart(distance); //串口发送距离 单位厘米
}
}
}
unsigned char key_scan(void) //按键查询
{
unsigned char on = 0,i;
while(1)
{
if(key==0) //判断是否按下
{
for(i=0;i<100;i++); //软件延时
if(key==0) //再次判断是否按下
{
on = 1;
break; //跳出循环
}
}
}
while(key==0);
return 1;
}
void uart_init(void) //串口初始化,用的是T1
{
TMOD=TMOD & 0x0f | 0x20;
TH1=0Xfd; //波特率9600(晶振12M)
TL1=0Xfd;
TR1=1;
REN=1;
SM0=0;
SM1=1;
}
void uart(uchar distance) //发送一个字节
{
SBUF = distance;
while(!TI);
TI = 0;
}
void chaoshengbo_init(void) //超声波初始化
{
trigger = 0;
}
uchar chaoshengbo(void) //超声波测距,返回厘米值
{
trigger=1; //给至少10us的高电平信号
_nop_();
_nop_();
_nop_(); //延时
_nop_();
_nop_();
_nop_();
TMOD=TMOD & 0xf0 |0x01; //T0初始化
TH0=0X0;
TL0=0X0;
trigger=0;
while(!rx); //等待上升沿
EA = 0; //关中断
TR0=1; //开启T0定时器
while(rx); //等待下降沿
TR0=0; //关闭T0定时器
EA = 1; //开中断
return (TH0*256+TL0)*0.034/2; //计算距离 单位厘米
}
‘伍’ 急需“基于cx20106的超声波测距的源程序",用1602显示,51单片机C语言编程!!! 谢谢
#include <reg52.h>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
//===============================LCD1602接口定义=====================
//定义引脚
#define LCM_Data P0 //数据接口
#define Busy 0x80 //用于检测LCM状态字中的Busy标识
sbit LCM_RW = P2^1; //读写控制输入端
sbit LCM_RS = P2^0; //寄存器选择输入端
sbit LCM_E = P2^2; //使能信号输入端
void WritEDAtaLCM (uchar WDLCM);
void WriteCommandLCM (uchar WCLCM,BuysC);
uchar ReadDataLCM (void);
uchar ReadStatusLCM (void);
void DisplayOneChar (uchar X,uchar Y,uchar ASCII);
void DisplayListChar (uchar X,uchar Y,uchar delayms,uchar code *DData);
void DisplayCursorPos (uchar X, uchar Y);
void LCMInit (void);
void DisplayIntData (uchar X, uchar Y,int ZhengShu,uchar Digit,uchar XiaoShu);
void DisplayCharData (uchar X, uchar Y,uchar ZiFu);
//===============================超声波模块定义========================
sbit RemPin = P3^2;// 接收端(这个不能修改,因为是外部中断(INT0)的引脚)
sbit TxPin = P3^5;// 发射端
uint length = 0; // 测距的长度0.00M
uchar flag = 0; // 测距的标志 有信号接收=1;
void DelayUs(uint us)
{
while(us--);
}
void DelayMs(uint Ms)
{
uint i,TempCyc;
for(i=0;i<Ms;i++)
{
TempCyc = 250;
while(TempCyc--);
}
}
//==============================LCD1602显示子程序================================================
void WritEDAtaLCM(unsigned char WDLCM)
{
ReadStatusLCM(); //检测忙
LCM_Data = WDLCM;
LCM_RS = 1;
LCM_RW = 0;
LCM_E = 0; //若晶振速度太高可以在这后加小的延时
LCM_E = 0; //延时
LCM_E = 1;
}
void WriteCommandLCM(unsigned char WCLCM,BuysC) //BuysC为0时忽略忙检测
{
if (BuysC) ReadStatusLCM(); //根据需要检测忙
LCM_Data = WCLCM;
LCM_RS = 0;
LCM_RW = 0;
LCM_E = 0;
LCM_E = 0;
LCM_E = 1;
}
unsigned char ReadDataLCM(void)
{
LCM_RS = 1;
LCM_RW = 1;
LCM_E = 0;
LCM_E = 0;
LCM_E = 1;
return(LCM_Data);
}
unsigned char ReadStatusLCM(void)
{
LCM_Data = 0xFF;
LCM_RS = 0;
LCM_RW = 1;
LCM_E = 0;
LCM_E = 0;
LCM_E = 1;
while (LCM_Data & Busy); //检测忙信号
return(LCM_Data);
}
void DisplayOneChar( unsigned char X, unsigned char Y, unsigned char ASCII)
{
X &= 0x1;
Y &= 0xF; //限制Y不能大于15,X不能大于1
if (X) Y |= 0x40; //当要显示第二行时地址码+0x40;
Y |= 0x80; // 算出指令码
WriteCommandLCM(Y, 0); //这里不检测忙信号,发送地址码
WritEDAtaLCM(ASCII);
}
void DisplayListChar(uchar X,uchar Y,uchar delayms, uchar code *DData)
{
unsigned char ListLength;
ListLength = 0;
X &= 0x1;
Y &= 0xF; //限制X不能大于15,Y不能大于1
while (DData[ListLength]!='\0') //若到达字串尾则退出
{
if (Y <= 0xF) //X坐标应小于0xF
{
DisplayOneChar(X, Y, DData[ListLength]); //显示单个字符
ListLength++;
Y++;
DelayMs(delayms);//延时显示字符串
}
else
break;//跳出循环体
}
}
void DisplayCursorPos( unsigned char X, unsigned char Y)
{
X &= 0x1;
Y &= 0xF; //限制Y不能大于15,X不能大于1
if (X) Y |= 0x40; //当要显示第二行时地址码+0x40;
Y |= 0x80; // 算出指令码
WriteCommandLCM(Y, 1); //这里不检测忙信号,发送地址码
}
void LCMInit(void)
{
LCM_Data = 0;
WriteCommandLCM(0x38,0); //三次显示模式设置,不检测忙信号
DelayMs(5);
WriteCommandLCM(0x38,0);
DelayMs(5);
WriteCommandLCM(0x38,0);
DelayMs(5);
WriteCommandLCM(0x38,1); //显示模式设置,开始要求每次检测忙信号
WriteCommandLCM(0x08,1); //关闭显示
WriteCommandLCM(0x01,1); //显示清屏
WriteCommandLCM(0x06,1); // 显示光标移动设置
WriteCommandLCM(0x0C,1); // 显示开及光标设置
DelayMs(100);
}
void DisplayIntData(uchar X, uchar Y,int ZhengShu,uchar Digit,uchar XiaoShu)
{
uchar i=0,k=0, BCD[5]={0};
if(Digit>5) Digit=5;
if(ZhengShu<0)
{
k=1;//负数示志位
ZhengShu=-ZhengShu;
}
BCD[4] = ZhengShu / 10000; //求出万位数据
ZhengShu = ZhengShu % 10000;
BCD[3] = ZhengShu / 1000; //求出千位数据
ZhengShu = ZhengShu % 1000;
BCD[2] = ZhengShu / 100; //求出百位数据
ZhengShu = ZhengShu % 100;
BCD[1] = ZhengShu / 10; //求出十位数据
BCD[0] = ZhengShu % 10; //求出个位数据
for(i=0;i<Digit;i++)//输出显示的数值
{
if((i==XiaoShu)&&(0!=XiaoShu))
{
DisplayOneChar(X,Y-i,'.');//输出小数点
Y= Y-1;
}
DisplayOneChar(X,Y-i,BCD[i]+0x30); //显示一个字符
}
if(k==1)
DisplayOneChar(X,Y-1,'-');//输出负符
}
void DisplayCharData(uchar X, uchar Y,uchar ZiFu)
{
uchar i=0;
uchar ValueBCD[3];
ValueBCD[0] = ZiFu / 100; //求出百位数据
ZiFu = ZiFu % 100;
ValueBCD[1] = ZiFu / 10; //求出十位数据
ValueBCD[2] = ZiFu % 10; //求出个位数据
for(i=0;i<3;i++)//输出显示的数值
{
DisplayOneChar(X,Y+i,ValueBCD[i]+0x30); //显示一个字符
}
}
//==============================超声波模块测试子程序================================================
void delay25us_40KHz(unsigned char us)
{
while(us--)
{
TxPin = 0;
_nop_();_nop_();
_nop_();_nop_();
_nop_();_nop_();
_nop_();_nop_();
_nop_();_nop_();
_nop_();
TxPin = 1;
_nop_();_nop_();
_nop_();_nop_();
}
TxPin = 1;
}
void init0int() interrupt 0
{
uint timer_us = 0;
TR0=0; //关闭定时器0
timer_us = TH0*256+TL0;
if(timer_us>190)timer_us=timer_us-180; //修正测距的距离
length = ((unsigned long)(340)*timer_us)/2000;//计算长度,是扩大100倍
flag = 0;
EA = 0; //禁止所有中断
}
void timer0int (void) interrupt 1
{
TR0=0; //关闭定时器0
length = 0; //超出测量时间显示示0
flag = 1; //
EA = 0; //禁止所有中断
}
void main(void)
{
LCMInit(); //1602初始化
EX0 = 1; //允许总中断中断,使能 INT0 外部中断
ET0 = 1;
TMOD=0x11; //设定T0为16位时器,设定T1为16位时器
DisplayOneChar( 1, 11, 'M');
DisplayListChar(0,2,0, "Range Finder "); //显示字符串
while(1)
{
DisplayIntData(1, 10,length,5,3);//显示测量距离
TH0=0x00;
TL0=0x00;
TR0=1; //启动定时器0
EA = 1; //允许所有中断
delay25us_40KHz(15); //发出脉冲信号
DelayMs(200);
}
}
‘陆’ 51单片机超声波测距代码是多少
1602液晶显示 的超声波模块程序
接口程序里边都有、、
#include<reg52.h>
//#include<delay.h>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
sbit lcdrs=P2^3;
sbit lcden=P2^2;
sbit trig=P2^0; //超声波发送
//sbit echo=P3^2; //超声波接受
//P0____________DB0-DB7
uchar dis[]="Disp_HC-SR04";
uchar num[]="0123456789";
uint distance;
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=121;y>0;y--);
}
void HC_init()
{
TMOD=0x09;
TR0=1;
TH0=0;TL0=0;
}
uint HC_jisuan()
{
uint dist,timer;
timer=TH0;
timer<<=8;
timer=timer|TL0;
dist=timer/53; //晶振11.0592MHz 距离cm=微秒us/58
return dist; //1个机器周期是12个时钟周期 timer*12/(58*11.0592)=timer/53
}
void HC_run()
{
uint tempH=0x00,tempL=0x00;
TH0=0;TL0=0;
trig=0;
trig=1;
delay(1);
trig=0;
while((TH0-tempH!=0||TL0-tempL!=0)||(TH0==0&&TL0==0))
{
tempH=TH0;
tempL=TL0;
}
delay(1);
}
void lcd_write_com(uchar com) //LCD写指令
{
lcdrs=0;
P0=com;
delay(1);
lcden=1;
delay(1);
lcden=0;
}
void lcd_write_data(uchar date) //LCD写数据
{
lcdrs=1;
P0=date;
delay(1);
lcden=1;
delay(1);
lcden=0;
}
void lcd_init() //LCD初始化
{
lcden=0;
lcd_write_com(0x38);
lcd_write_com(0x0c);
lcd_write_com(0x06);
lcd_write_com(0x01);
}
void lcd_display(uchar temp)
{
uint i;
lcd_write_com(0x82);
for(i=0;i<12;i++)
{
lcd_write_data(dis[i]);
}
lcd_write_com(0x80+0x41);
lcd_write_data('D');
lcd_write_data('i');
lcd_write_data('s');
lcd_write_data('t');
lcd_write_data('a');
lcd_write_data('n');
lcd_write_data('c');
lcd_write_data('e');
lcd_write_data(':');
lcd_write_data(num[temp/100]);
lcd_write_data(num[temp/10%10]);
lcd_write_data(num[temp%10]);
lcd_write_data('c');
lcd_write_data('m');
}
void main()
{
lcd_init();
HC_init();
while(1)
{
HC_run();
distance=HC_jisuan();
lcd_display(distance);
delay(200);
}
}
‘柒’ 51单片机 HC-SR04超声波测距 我写的C语言代码,请问
1、HC-SR04使用方法:给触发端子trig一个10us以上的高电平即可触发,触发后echo端子将接受到高电平,高电平的持续时间就是测距的往返时间。
2、例程:
#include<reg52.h>
#defineucharunsignedchar
#defineuintunsignedint
/*位定义*/
sbitCHUFA=P0^1;//位定义超声波触发端(10us以上高电平触发)
sbitJIESHOU=P0^3;//接收端(接受高电平)
sbitBEEP=P2^0;//蜂鸣器
sbitOUT0=P3^2;//外部中断0
ucharJS_FLAG;//接收标志
uintCF_TIME,t0,t1,shu;
/*函数声明*/
voidtimer0();
voidint0();
voiddisplay(uint);
main(){
CHUFA=0;//初始化拉低触发端和接收端电平
JIESHOU=0;
JS_FLAG=0;
CF_TIME=15;//初始化触发时间(大于10us)
TMOD=0x11;//定时器方式选择
EA=1;//开总中断
ET0=1;//开定时器0中断
EX0=1;//开外部中断0
IT0=0;//外部中断选择下降沿触发
//JIESHOU=1;
while(1){
OUT0=JIESHOU;//外部中断0被赋值为接收端信号,当出现下降沿是触发外部中断0
if(JS_FLAG==0){//如果没有接收到高电平则触发
CHUFA=1;
while(CF_TIME--);//10us以上高电平触发传感器
}
if(JIESHOU==1){
TR0=1;//如果接收端收到高电平则启动定时器
JS_FLAG=1;//并且标志位置1
BEEP=0;//蜂鸣器响
}
display(t1);//显示测量时间(秒)
}
}
/*定时器0中断程序*/
voidtimer0()interrupt1{
TH0=(65536-10000)/256;//装初值10ms
TL0=(65536-10000)%256;
t0++;//每进入一次中断t0加1
}
/*外部中断0中断程序*/
voidint0()interrupt0{
TR0=0;//一旦进入外部中断0,说明接收端收到下降沿信号。关闭定时器0
JS_FLAG=0;//接收标志位置0
BEEP=1;//关闭蜂鸣器
t1=t0*10/1000;//测量时间为进入定时器中断次数t0乘以每次时间10ms,除以1000化为秒为单位
t0=0;//t0清零
}
/*数码管显数函数*/
voiddisplay(uintshu){
//数码管显示函数
}
‘捌’ 51单片机如何控制超声波传感器 求C语言程序(一定要能用)100追加
//超声波模块ME007显示程序
//晶振=8M
//MCU=STC10F04XE
//P0.0-P0.6共阳数码管引脚
//Trig = P1^0
//Echo = P3^2
#include <reg52.h> //包括一个52标准内核的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
//***********************************************
sfr CLK_DIV = 0x97; //为STC单片机定义,系统时钟分频
//为STC单片机的IO口设置地址定义
sfr P0M1 = 0X93;
sfr P0M0 = 0X94;
sfr P1M1 = 0X91;
sfr P1M0 = 0X92;
sfr P2M1 = 0X95;
sfr P2M0 = 0X96;
//***********************************************
sbit Trig = P1^0; //产生脉冲引脚
sbit Echo = P3^2; //回波引脚
sbit test = P1^1; //测试用引脚
uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
//void pai_xu();
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
CLK_DIV=0X03; //系统时钟为1/8晶振(pdf-45页)
P0M1 = 0; //将io口设置为推挽输出
P1M1 = 0;
P2M1 = 0;
P0M0 = 0XFF;
P1M0 = 0XFF;
P2M0 = 0XFF;
i=0;
flag=0;
test =0;
Trig=0; //首先拉低脉冲输入引脚
TMOD=0x11; //定时器0,定时器1,16位工作方式
TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
ET0=1; //打开定时器0中断
//ET1=1; //打开定时器1中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0
while(1) //程序循环
{
EA=0;
Trig=1;
delay_20us();
Trig=0; //产生一个20us的脉冲,在Trig引脚
while(Echo==0); //等待Echo回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;
while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断
if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
test = !test; //测试灯变化
}
/// distance[i]=distance_data; //将测量结果的数据放入缓冲区
/// i++;
/// if(i==3)
/// {
/// distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
/// pai_xu();
/// distance_data=distance[1];
a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
/// i=0;
/// }
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
TH0=0xfd; //写入定时器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0xfd;flag++;break;
case 0x01:P0=shi;P2=0xfe;flag++;break;
case 0x02:P0=;P2=0xfb;flag=0;break;
}
}
//*****************************************************************
/*
//定时器1中断,用做超声波测距计时
timer1() interrupt 3 // 定时器0中断是1号
{
TH1=0;
TL1=0;
}
*/
//******************************************************************
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;
_data=SEG7[_data];
shi_data=SEG7[shi_data];
ge_data =SEG7[ge_data];
EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<100;bt++);
}
/*
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;} /*交换值
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;} /*交换值
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;} /*交换值
}
*/
我的一个超声波程序
有问题,请问~~
//超声波模块显示程序
#include <reg52.h> //包括一个52标准内核的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
#define uchar unsigned char //定义一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //产生脉冲引脚
sbit Rx = P3^2; //回波引脚
sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
unsigned char code string[ ]= {"CHAO SHENG BO"};
//unsigned char code string1[ ]={"QUICK STUDY MCU"};
unsigned char code digit[ ]={"0123456789"}; //定义字符数组显示数字
//uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9
uint distance[4]; //测距接收缓冲区
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定义寄存器
bit succeed_flag; //测量成功标志
//********函数声明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();
/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<10;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delay(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
unsigned char BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delay(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delay(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delay(5);
WriteInstruction(0x38); //连续三次,确保初始化成功
delay(5);
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delay(5);
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delay(5);
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delay(5);
}
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
uchar k; //定义变量i指向字符串数组元素
LcdInitiate(); //调用LCD初始化函数
delay(10); //延时10ms,给硬件一点反应时间
WriteAddress(0x01); // 从第1行第3列开始显示
k = 0; //指向字符数组的第1个元素
while(string[k] != '\0')
{
WriteData(string[k]);
k++; //指向下字符数组一个元素
}
i=0;
flag=0;
Tx=0; //首先拉低脉冲输入引脚
TMOD=0x10; //定时器0,定时器1,16位工作方式
// TR0=1; //启动定时器0
IT0=0; //由高电平变低电平,触发外部中断
//ET0=1; //打开定时器0中断
EX0=0; //关闭外部中断
EA=1; //打开总中断0
while(1) //程序循环
{
WriteAddress(0x41); // 从第2行第6列开始显示
WriteData('J'); //将万位数字的字符常量写入LCD
WriteData('U'); //将万位数字的字符常量写入LCD
WriteData('L'); //将万位数字的字符常量写入LCD
WriteData('I'); //将万位数字的字符常量写入LCD
WriteData(':'); //将万位数字的字符常量写入LCD
WriteData(digit[]); //将万位数字的字符常量写入LCD
WriteData(digit[shi]); //将千位数字的字符常量写入LCD
WriteData('.'); //将万位数字的字符常量写入LCD
WriteData(digit[ge]); //将百位数字的字符常量写入LCD
WriteData(' '); //将百位数字的字符常量写入LCD
WriteData('C'); //将万位数字的字符常量写入LCD
WriteData('M'); //将万位数字的字符常量写入LCD
EA=0;
Tx=1;
delay_20us();
Tx=0; //产生一个20us的脉冲,在Tx引脚
while(Rx==0); //等待Rx回波引脚变高电平
succeed_flag=0; //清测量成功标志
EX0=1; //打开外部中断
TH1=0; //定时器1清零
TL1=0; //定时器1清零
TF1=0; //
TR1=1; //启动定时器1
EA=1;
while(TH1 < 30);//等待测量的结果,周期65.535毫秒(可用中断实现)
TR1=0; //关闭定时器1
EX0=0; //关闭外部中断
if(succeed_flag==1)
{
distance_data=outcomeH; //测量结果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据
distance_data*=12; //因为定时器默认为12分频
distance_data/=58; //微秒的单位除以58等于厘米
} //为什么除以58等于厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //没有回波则清零
}
distance[i]=distance_data; //将测量结果的数据放入缓冲区
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
pai_xu();
distance_data=distance[1];
a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中断0,用做判断回波电平
INTO_() interrupt 0 // 外部中断是0号
{
outcomeH =TH1; //取出定时器的值
outcomeL =TL1; //取出定时器的值
succeed_flag=1; //至成功测量的标志
EX0=0; //关闭外部中断
}
//****************************************************************
//定时器0中断,用做显示
timer0() interrupt 1 // 定时器0中断是1号
{
// TH0=0xfd; //写入定时器0初始值
// TL0=0x77;
}
//显示数据转换程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余运算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余运算
ge_data=temp_data;
//_data=SEG7[_data];
//shi_data=SEG7[shi_data]&0x7f;
//ge_data =SEG7[ge_data];
EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************
void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}
第一个需要修改,你还是试试这个吧!这个你先理解下,修改引脚……显示为1602
‘玖’ 51单片机超声波测距代码
1602液晶显示 的超声波模块程序
接口程序里边都有、、
#include
//#include
#include
#define uchar unsigned char
#define uint unsigned int
sbit lcdrs=P2^3;
sbit lcden=P2^2;
sbit trig=P2^0; //超声波发送
//sbit echo=P3^2; //超声波接受
//P0____________DB0-DB7
uchar dis[]="Disp_HC-SR04";
uchar num[]="0123456789";
uint distance;
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=121;y>0;y--);
}
void HC_init()
{
TMOD=0x09;
TR0=1;
TH0=0;TL0=0;
}
uint HC_jisuan()
{
uint dist,timer;
timer=TH0;
timer<<=8;
timer=timer|TL0;
dist=timer/53; //晶振11.0592MHz 距离cm=微秒us/58
return dist; //1个机器周期是12个时钟周期 timer*12/(58*11.0592)=timer/53
}
void HC_run()
{
uint tempH=0x00,tempL=0x00;
TH0=0;TL0=0;
trig=0;
trig=1;
delay(1);
trig=0;
while((TH0-tempH!=0||TL0-tempL!=0)||(TH0==0&&TL0==0))
{
tempH=TH0;
tempL=TL0;
}
delay(1);
}
void lcd_write_com(uchar com) //LCD写指令
{
lcdrs=0;
P0=com;
delay(1);
lcden=1;
delay(1);
lcden=0;
}
void lcd_write_data(uchar date) //LCD写数据
{
lcdrs=1;
P0=date;
delay(1);
lcden=1;
delay(1);
lcden=0;
}
void lcd_init() //LCD初始化
{
lcden=0;
lcd_write_com(0x38);
lcd_write_com(0x0c);
lcd_write_com(0x06);
lcd_write_com(0x01);
}
void lcd_display(uchar temp)
{
uint i;
lcd_write_com(0x82);
for(i=0;i<12;i++)
{
lcd_write_data(dis[i]);
}
lcd_write_com(0x80+0x41);
lcd_write_data('D');
lcd_write_data('i');
lcd_write_data('s');
lcd_write_data('t');
lcd_write_data('a');
lcd_write_data('n');
lcd_write_data('c');
lcd_write_data('e');
lcd_write_data(':');
lcd_write_data(num[temp/100]);
lcd_write_data(num[temp/10%10]);
lcd_write_data(num[temp%10]);
lcd_write_data('c');
lcd_write_data('m');
}
void main()
{
lcd_init();
HC_init();
while(1)
{
HC_run();
distance=HC_jisuan();
lcd_display(distance);
delay(200);
}
}
‘拾’ 求一段汇编程序,利用51单片机控制超声波传感器测距的程序。
; 基于AT89C2051单片机超声波测距系统
; 测量范围35-300厘米
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 中断入口程序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ORG 0000H
AJMP START
ORG 000BH
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 主 程 序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
START : MOV R0,#70H ;立即数70H送寄存器R0中
MOV R7,#0BH ;立即数0BH送寄存器R7中
MOV 20H,#00H ;立即数00H送20H单元中
CLEARDISP: MOV @R0,#00H ;立即数立即数00H送R0中的地址单元中
INC R0 ;寄存器R0加1
DJNZ R7,CLEARDISP;寄存器中的数值减1非零时转移
MOV TMOD,#01H ;置定时器T0工作方式样3,对内部机器周期计数
CJZCX:MOV TL0,#00H ;装入定时器初值
MOV TH0,#00H
MOV R0,#0FH
MOV R1,#5bH
puzel:MOV 14H,#08H ;超声波发射持续200us
Here:CPL P3.5 ;输出40kHz方波
NOP ;
NOP ;
NOP ;
DJNZ 14H,Here ;
SETB TR0
SETB P3.2
MOV R6,#53H ;延时1.5ms
DL0: MOV R5,#03H
DJNZ R5,$
DJNZ R6,DL0
QBA:JNB P3.7,QBC
DJNZ R1,QBA
DJNZ R0,QBA
QBC:CLR P3.2
CLR TR0
MOV 70H,tl0
MOV 71H,tH0
MOV R2,71H
MOV R3,70H
MOV R6,#22H
MOV R7,#0H
LCALL MULD
MOV R6,#64H
MOV R7,#0H
LCALL DIVD
MOV 73H,R2
MOV 74H,R3
MOV R3,#0H
MOV R4,#0H
MOV R5,#0H
MOV R6,73H
MOV R7,74H
LCALL HB2
MOV A,R4 ;分离BCD
MOV B,#10H
DIV AB
MOV 78H,A
MOV 77H,B
MOV A,R5
MOV B,#10H
DIV AB
MOV 76H,A
MOV 75H,B
MOV 7AH,#0EFH
XXX:LCALL DISPLAY
DJNZ 7AH,XXX
AJMP CJZCX
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 乘34程序(乘声速) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MULD: MOV A,R3 ;计算R3乘R7
MOV B,R7
MUL AB
MOV R4,B ;暂存部分积
MOV R5,A
MOV A,R3 ;计算R3乘R6
MOV B,R6
MUL AB
ADD A,R4 ;累加部分积
MOV R4,A
CLR A
ADDC A,B
MOV R3,A
MOV A,R2 ;计算R2乘R7
MOV B,R7
MUL AB
ADD A,R4 ;累加部分积
MOV R4,A
MOV A,R3
ADDC A,B
MOV R3,A
CLR A
RLC A
XCH A,R2 ;计算R2乘R6
MOV B,R6
MUL AB
ADD A,R3 ;累加部分积
MOV R3,A
MOV A,R2
ADDC A,B
MOV R2,A
RET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 除100程序(除法) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DIVD: CLR C ;比较被除数和除数
MOV A,R3
SUBB A,R7
MOV A,R2
SUBB A,R6
JC DVD1
SETB OV ;溢出
RET
DVD1: MOV B,#10H ;计算双字节商
DVD2: CLR C ;部分商和余数同时左移一位
MOV A,R5
RLC A
MOV R5,A
MOV A,R4
RLC A
MOV R4,A
MOV A,R3
RLC A
MOV R3,A
XCH A,R2
RLC A
XCH A,R2
MOV F0,C ;保存溢出位
CLR C
SUBB A,R7 ;计算(R2R3-R6R7)
MOV R1,A
MOV A,R2
SUBB A,R6
ANL C,/F0 ;结果判断
JC DVD3
MOV R2,A ;够减,存放新的余数
MOV A,R1
MOV R3,A
INC R5 ;商的低位置一
DVD3: DJNZ B,DVD2 ;计算完十六位商(R4R5)
MOV A,R4 ;将商移到R2R3中
MOV R2,A
MOV A,R5
MOV R3,A
CLR OV ;设立成功标志
RET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; BCD转换 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
HB2: CLR A ;BCD码初始化
MOV R3,A
MOV R4,A
MOV R5,A
MOV R2,#10H ;转换双字节十六进制整数
HB3: MOV A,R7 ;从高端移出待转换数的一位到CY中
RLC A
MOV R7,A
MOV A,R6
RLC A
MOV R6,A
MOV A,R5 ;BCD码带进位自身相加,相当于乘2
ADDC A,R5
DA A ;十进制调整
MOV R5,A
MOV A,R4
ADDC A,R4
DA A
MOV R4,A
MOV A,R3
ADDC A,R3
MOV R3,A ;双字节十六进制数的万位数不超过6,不用调整
DJNZ R2,HB3 ;处理完16bit
RET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 显示程序 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DISPLAY: MOV R1,#76H ;立即数76H送寄存器中
MOV R5,#0FEH ;立即数FEH送寄存器R5中
PLAY: MOV A,R5 ;寄存器R5中的数值送累加器A中
MOV P3,A ;累加器A中的数值送P3口
MOV A,@R1 ;以寄存器R1中的数为地址单元的数值送累加器中
MOV DPTR,#TAB ;16位地址送地址寄存器中
MOVC A,@A+DPTR ;以中的地址为基地变址寻址单元中的数送累加器
MOV P1,A ;累加器A中的数值送P1口
MOV R6,#14H ;立即数据14送寄存器R6中
DL1:MOV R7,#19H ;立即数据19送寄存器R7中
DL2:DJNZ R7,DL2 ;寄存器中的数据减1,不为零时则转移
DJNZ R6,DL1 ;寄存器中的数据减1,不为零时则转移
INC R1 ;寄存器R1中的数值加1
MOV A,R5 ;寄存器R5中的数值送累加器A中
JNB ACC.2,ENDOUT ;地址位为0则转到ENDOUT
RL A ;累加器循环右移
MOV R5,A ;累加器A中的数值送寄存器R5中
AJMP PLAY ;绝对短转移
ENDOUT: SETB P3.5 ;置P3.5口
MOV P1,#0FFH ;立即数0FEH送P1口
RET ;返回
TAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH
END ;结束
我见过一款制作容易免调试的超声波测距板,你可到“谷歌”上搜索一下《一款制作容易免调试的超声波测距板》,该超声波测距板结构简单、制作容易不需要调试、测量精度高,比较适合单片机初学都使用,同时也是单片机课程设计比较好的实训课题。该超声波测距系统,提供套件,及组装好的板件,含原理图、源程序、设计说明等。