⑴ linux查看磁盘io的几种方法
linux查看磁盘io的几种方法
怎样才能快速的定位到并发高是由于磁盘io开销大呢?可以通过三种方式:
第一种:用 top 命令 中的cpu 信息观察
Top可以看到的cpu信息有:
Tasks: 29 total, 1 running, 28 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.3% us, 1.0% sy, 0.0% ni, 98.7% id, 0.0% wa, 0.0% hi, 0.0% si
具体的解释如下:
Tasks: 29 total 进程总数
1 running 正在运行的进程数
28 sleeping 睡眠的进程数
0 stopped 停止的进程数
0 zombie 僵尸进程数
Cpu(s):
0.3% us 用户空间占用CPU百分比
1.0% sy 内核空间占用CPU百分比
0.0% ni 用户进程空间内改变过优先级的进程占用CPU百分比
98.7% id 空闲CPU百分比
0.0% wa 等待输入输出的CPU时间百分比
0.0% hi
0.0% si
0.0% wa 的百分比可以大致的体现出当前的磁盘io请求是否频繁。如果 wa的数量比较大,说明等待输入输出的的io比较多。
第二种:用vmstat
vmstat 命令报告关于线程、虚拟内存、磁盘、陷阱和 CPU 活动的统计信息。由 vmstat 命令生成的报告可以用于平衡系统负载活动。系统范围内的这些统计信息(所有的处理器中)都计算出以百分比表示的平均值,或者计算其总和。
输入命令:
vmstat 2 5
如果发现等待的进程和处在非中断睡眠状态的进程数非常多,并且发送到块设备的块数和从块设备接收到的块数非常大,那就说明磁盘io比较多。
vmstat参数解释:
Procs
r: 等待运行的进程数 b: 处在非中断睡眠状态的进程数 w: 被交换出去的可运行的进程数。此数由 linux 计算得出,但 linux 并不耗尽交换空间
Memory
swpd: 虚拟内存使用情况,单位:KB
free: 空闲的内存,单位KB
buff: 被用来做为缓存的内存数,单位:KB
Swap
si: 从磁盘交换到内存的交换页数量,单位:KB/秒
so: 从内存交换到磁盘的交换页数量,单位:KB/秒
IO
bi: 发送到块设备的块数,单位:块/秒
bo: 从块设备接收到的块数,单位:块/秒
System
in: 每秒的中断数,包括时钟中断
cs: 每秒的环境(上下文)切换次数
CPU
按 CPU 的总使用百分比来显示
us: CPU 使用时间
sy: CPU 系统使用时间
id: 闲置时间
准测
更多vmstat使用信息
第二种:用iostat
安装:
Iostat 是 sysstat 工具集的一个工具,需要安装。
Centos的安装方式是:
yum install sysstat
Ubuntu的安装方式是:
aptitude install sysstat
使用:
iostat -dx 显示磁盘扩展信息
root@fileapp:~# iostat -dx
r/s 和 w/s 分别是每秒的读操作和写操作,而rKB/s 和wKB/s 列以每秒千字节为单位显示了读和写的数据量
如果这两对数据值都很高的话说明磁盘io操作是很频繁。
+++++++++++++++++++++++++++++++++++++
linux wa%过高,iostat查看io状况
1, 安装 iostat
yum install sysstat
之后就可以使用 iostat 命令了,
2,入门使用
iostat -d -k 2
参数 -d 表示,显示设备(磁盘)使用状态;-k某些使用block为单位的列强制使用Kilobytes为单位;2表示,数据显示每隔2秒刷新一次。
tps:该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。"一次传输"意思是"一次I/O请求"。多个逻辑请求可能会被合并为"一次I/O请求"。"一次传输"请求的大小是未知的。kB_read/s:每秒从设备(drive expressed)读取的数据量;
kB_wrtn/s:每秒向设备(drive expressed)写入的数据量;
kB_read:读取的总数据量;kB_wrtn:写入的总数量数据量;这些单位都为Kilobytes。
指定监控的设备名称为sda,该命令的输出结果和上面命令完全相同。
iostat -d sda 2
默认监控所有的硬盘设备,现在指定只监控sda。
3, -x 参数
iostat还有一个比较常用的选项 -x ,该选项将用于显示和io相关的扩展数据。
iostat -d -x -k 1 10
输出信息的含义
。
4, 常见用法
iostat -d -k 1 10 #查看TPS和吞吐量信息(磁盘读写速度单位为KB)
iostat -d -m 2 #查看TPS和吞吐量信息(磁盘读写速度单位为MB)
iostat -d -x -k 1 10 #查看设备使用率(%util)、响应时间(await) iostat -c 1 10 #查看cpu状态
5, 实例分析
iostat -d -k 1 | grep vda
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda10 60.72 18.95 71.53 395637647 1493241908
sda10 299.02 4266.67 129.41 4352 132
sda10 483.84 4589.90 4117.17 4544 4076
sda10 218.00 3360.00 100.00 3360 100
sda10 546.00 8784.00 124.00 8784 124
sda10 827.00 13232.00 136.00 13232 136
上面看到,磁盘每秒传输次数平均约400;每秒磁盘读取约5MB,写入约1MB。
iostat -d -x -k 1
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sda 1.56 28.31 7.84 31.50 43.65 3.16 21.82 1.58 1.19 0.03 0.80 2.61 10.29
sda 1.98 24.75 419.80 6.93 13465.35 253.47 6732.67 126.73 32.15 2.00 4.70 2.00 85.25
sda 3.06 41.84 444.90 54.08 14204.08 2048.98 7102.04 1024.49 32.57 2.10 4.21 1.85 92.24
可以看到磁盘的平均响应时间<5ms,磁盘使用率>80。磁盘响应正常,但是已经很繁忙了。
可以看到磁盘的平均响应时间<5ms,磁盘使用率>90。磁盘响应正常,但是已经很繁忙了。
await: 每一个IO请求的处理的平均时间(单位是微秒毫秒)。这里可以理解为IO的响应时间,一般地系统IO响应时间应该低于5ms,如果大于10ms就比较大了
svctm 表示平均每次设备I/O操作的服务时间(以毫秒为单位)。如果svctm的值与await很接近,表示几乎没有I/O等待,磁盘性能很好,
如果await的值远高于svctm的值,则表示I/O队列等待太长, 系统上运行的应用程序将变慢。
%util: 在统计时间内所有处理IO时间,除以总共统计时间
所以该参数暗示了设备的繁忙程度
。一般地,如果该参数是100%表示设备已经接近满负荷运行了(当然如果是多磁盘,即使%util是100%,因为磁盘的并发能力,所以磁盘使用未必就到了瓶颈)。
也可以使用下面的命令,同时显示cpu和磁盘的使用情况
等待时间超过5ms, 磁盘io有问题
⑵ linux执行db2 sql的sh脚本操作中断
oracle 10g的DBMS_XPLAN包中display_cursor函数不同于display函数,display_cursor用于显示SQL语句的真实的执行计划,在大多数情况下,
显示真实的执行计划有助于更好的分析SQL语句的全过程,尤其是运行此SQL语句实时的I/O开销。通过对比预估的I/O与真实的I/O开销来判断
SQL语句所存在问题,如缺少统计信息,SQL语句执行的次数,根据实际中间结果集的大小来选择合适的连接方式等。本文仅仅讲述
display_cursor函数的使用。
一、display_cursor函数用法
1、display_cursor函数语法
DBMS_XPLAN.DISPLAY_CURSOR(
sql_id IN VARCHAR2 DEFAULT NULL,
cursor_child_no IN NUMBER DEFAULT NULL,
format IN VARCHAR2 DEFAULT 'TYPICAL');
2、display_cursor函数参数描述
sql_id
指定位于库缓存执行计划中SQL语句的父游标。默认值为null。当使用默认值时当前会话的最后一条SQL语句的执行计划将被返回
可以通过查询V$SQL 或V$SQLAREA的SQL_ID列来获得SQL语句的SQL_ID。
cursor_child_no
指定父游标下子游标的序号。即指定被返回执行计划的SQL语句的子游标。默认值为0。如果为null,则sql_id所指父游标下所有子游标
的执行计划都将被返回。
format
控制SQL语句执行计划的输出部分,即哪些可以显示哪些不显示。使用与display函数的format参数与修饰符在这里同样适用。
除此之外当在开启statistics_level=all时或使用gather_plan_statistics提示可以获得执行计划中实时的统计信息
有关详细的format格式描述请参考:dbms_xplan之display函数的使用 中format参数的描述
下面给出启用统计信息时format新增的修饰符
iostats 控制I/O统计的显示
last 默认,显示所有执行计算过的统计。如果指定该值,则只显示最后一次执行的统计信息
memstats 控制pga相关统计的显示
allstats 此为iostats memstats的快捷方式,即allstats包含了iostats和memstats
run_stats_last 等同于iostats last。只能用于oracle 10g R1
run_stats_tot 等同于iostats。只能用于oracle 10g R1
抓一个最近一小时最消耗IO的SQL:
SELECT sql_id, COUNT(*)
FROM gv$active_session_history ash, gv$event_name evt
WHERE ash.sample_time > SYSDATE - 1 / 24
AND ash.session_state = 'WAITING'
AND ash.event_id = evt.event_id
AND evt.wait_class = 'User I/O'
GROUP BY sql_id
ORDER BY COUNT(*) DESC;
执行上面的SQL:
SQL> SELECT sql_id, COUNT(*)
FROM gv$active_session_history ash, gv$event_name evt
2 3 WHERE ash.sample_time > SYSDATE - 1 / 24
4 AND ash.session_state = 'WAITING'
5 AND ash.event_id = evt.event_id
6 AND evt.wait_class = 'User I/O'
7 GROUP BY sql_id
8 ORDER BY COUNT(*) DESC;
SQL_ID COUNT(*)
------------- ----------
g7fu6qba82m6b 668
63r47zyphdk06 526
9f5m4wd88nc1h 514
593p47drw5fhk 232
br91w16jzy4fu 120
4fvwyjpnh6tp7 78
gm0nrbfuj8kzr 70
2184k363hw4xd 68
gc4dajs7g5myy 46
8vrk9sfuwfdgq 42
ccpnb4dwdmq21 40
查看SQL的执行计划:
SELECT * FROM TABLE(dbms_xplan.display_cursor('g7fu6qba82m6b'));
在SQLPLUS中执行:
SQL> set pagesize 2000
SQL> SELECT * FROM TABLE(dbms_xplan.display_cursor('g7fu6qba82m6b'));
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------------------
SQL_ID g7fu6qba82m6b, child number 0
-------------------------------------
UPDATE "CPDDS_PDATA"."CDM_LEDGER" SET "CSTM_NAME" = :a1,"CSTM_NO" =
:a2,"PAPER_TYPE" = :a3,"PAPER_NO" = :a4,"CURR_TYPE" = :a5,"SVT_NO" =
:a6,"BAL_DIR" = :a7,"BAL" = :a8,"AVAL_BAL" = :a9,"NORM_FRATIO" =
:a10,"PK_BAL" = :a11,"DR_ACCU" = :a12,"CR_ACCU" = :a13,"LAST_TRAN_DATE" =
:a14,"LAST_TRAN_TIME" = :a15,"PRT_LINE_NUM" = :a16,"NOREG_PK_REC_NUM" =
:a17,"PK_NO" = :a18,"PWD" = :a19,"FLAG" = :a20,"FRZ_FLAG" =
:a21,"CARD_HOLD_FLAG" = :a22,"PK_HOLD_FLAG" = :a23,"BGN_INT_DATE" =
:a24,"OPEN_DATE" = :a25,"ACC_HOLD_FLAG" = :a26,"CLS_DATE" =
:a27,"OPEN_TLR" = :a28,"CLS_TLR" = :a29,"CLS_INT" = :a30,"OPEN_INST" =
:a31,"ADD_NUM" = :a32,"DAC" = :a33,"FRZ_TIMES1" = :a34,"FRZ_TIMES2" =
:a35,"HOST_SEQNO" = :a36,"D_UPDATE_DATE" = :a37 WHERE "ACC" = :b0
Plan hash value: 319441092
-----------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------
| 0 | UPDATE STATEMENT | | | | 3 (100)| |
| 1 | UPDATE | CDM_LEDGER | | | | |
|* 2 | INDEX UNIQUE SCAN| I_CDM_LEDGER | 1 | 269 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("ACC"=:B0)
29 rows selected.
总结
1、与display函数不同,display_cursor显示的为真实的执行计划
2、对于format参数,使用与display函数的各个值,同样适用于display_cursor函数
3、当statistics_level为all或使用gather_plan_statistics提示可以获得执行时的统计信息
4、根据真实与预估的统计信息可以初步判断SQL效率低下的原因,如统计信息的准确性、主要的开销位于那些步骤等
⑶ Linux--常见问题:LOAD高但是CPU和IO都很低问题解决
正常情况下我们在发现Load 过高时都会去查询几个方向
按上面情况查询基本上99%的都能查出问题所在,但是剩余1%特殊情况确无法判断出来
下面介绍下剩余1%中的一种相对常见的情况。
查看一下进程的状态:
# top -H
# shift+o =选择w (按照状态排序)
# R(排序)
结果发现一近十个find和其它进程的状态是D(uninterruptible sleep)。
再看看进程,该机器挂了nfs,因此应该是大耗时操作挂载盘的结果
1,一般这种情况想立刻解决可以直接重新mount这些盘使这些IO操作失败中断。
2, 强制卸载目录 umount -f 目录
注:使用-f 参数进行强制卸载时一般建议等一会儿,一些情况下处理需要1-2分钟的时间。
3,使用umount -f,问题依旧。使用fuser命令,先确认有那些进程在占用该目录
# fuser -cu 目录 查询关联应用
# fuser -ck 目录 强制卸载
⑷ 深入剖析Linux IO原理和几种零拷贝机制的实现未完待续
1。物理内存和虚拟内存
物理内存只有内核才可以访问。
因为操作系统的进程与进程之间是共享CPU和资源的,为了防止进程之间互相影响就有了一个对主存的抽象概念:虚拟内存。虚拟内存使得应用程序以为自己有一块连续独立的存储空间,实际上是多个物理内存碎片。而虚拟内存和物理内存的对应关系存放在一个叫页表的地方。每个进程都有自己独立的页表。下图为上述三个概念的关系。
现在来总结下进程申请并访问物理内存的过程:
2。内核空间和用户空间
操作系统的核心是内核,独立于普通的应用程序。可以访问受保护的内存空间也可以访问硬件设备。为了保护内核安全,所以将虚拟内存分为内核空间和用户空间。 内核模块运行于内核空间,对应的进程处于内核态。用户模块运行于用户空间,对应的进程处于用户态。
3。Linux IO 读写的方式
轮询/IO中断/DMA
3.1 IO中断。 一个图就可以懂🦈
具体过程如下(图已经清晰了 _ 为了以后回忆文字也贴上来
3.2 DMA
其实我自己感觉只是节省的CPU一小部分的时间(将数据从磁盘缓冲区复制到内核缓冲区)
前面已经讲了Linux 读 操作的两种方式具体步骤,下面讲一下 读写 整个过程的步骤。为了更好的理解零拷贝实现方式所以理解基础的读写过程也很重要。
4 传统的IO
在linux系统中通过read()方法读取文件到缓冲区,调用write()方法将缓冲区的数据输出到网络端口。
4次上下文切换:读写时(用户态 <==> 内核态)
4次拷贝动作:DMA2次 + CPU2次
Ps:
4.1 传统的写操作
写数据和读数据差不多啦就不写了
5 零拷贝实现方式的思路
这个文章也可以看一下 https://cloud.tencent.com/developer/article/1346483
摘抄于 https://zhuanlan.hu.com/p/83398714