导航:首页 > 操作系统 > linux页表进程

linux页表进程

发布时间:2023-01-18 17:30:57

linux中让子进程执行和父进程不同功能的两种常用方法

运维
Linux系统进程控制

行者111111111111111
原创
关注
0点赞·3人阅读
1、进程创建
shell命令行启动程序指令皆是创建了进程,我们通常通过调用fork()函数创建子进程。
1.1、fork()函数用法简介
调用fork后,操作系统内核将:

分配新的内存块和内核数据结构给子进程
将父进程部分数据结构内容拷贝至子进程
添加子进程到系统进程列表当中
fork返回,开始调度器调度
1.2、fork函数返回值
子进程返回0,父进程返回的是子进程的pid

原因:fork之后进入内核,申请内存构建子进程PCB、虚拟内存、页表,将子进程设置R状态,放入调度队列,由于创建子进程之后父子进程共享代码,所以父子进程都会有return返回值。返回值返回给变量本质发生了写时拷贝,改变了子进程对应页表的指向,数据映射到了其他区域
1.3、写时拷贝
由于进程要独立,代码不可修改,数据可改,所以默认数据各有一份,但是内存是有限度的,如果把父进程数据全部再拷贝一份,那么太浪费内存,甚至导致fork失败。通常通过写时拷贝实现,就是当父或子进程修改数据时,将要修改的数据拷贝一份,让子进程页表指向新的重复数据在发生修改

❷ linux进程内存相关

3种地址:虚拟地址、物理地址、逻辑地址
物理地址:内存的电路地址,对应内存地址线上的高低电平,物理可见的。
虚拟地址: 分页机制 的产物,也叫线性地址,是进程能看见的地址。
逻辑地址: 分段机制 的产物,属于inter cpu的历史遗留问题,linux可以当做不存在。
3种地址的转换:进程访问逻辑地址,linux内核根据分段机制装换成虚拟地址,然后把进程的页表和虚拟地址都告诉cpu,cpu就可以根据分页机制将虚拟地址装换成物理地址,然后访问内存。
linux内核中巧妙地屏蔽里分段机制,就是逻辑地址等于虚拟地址,访问内存只需要利用分页机制把虚拟地址转换成物理地址。

linux会为每个进程创建自己的虚拟地址空间,就是进程地址空间,64位系统就是128T的内存空间。需要注意的是,虚拟地址就是假的,一开始不和物理地址对应,也就是说不占用物理内存,只有当虚拟地址有写入操作是,内核会触发缺页,分配真实的物理地址给虚拟地址。物理地址的管理可参考 内核内存管理

从进程空间看,用户态闲置内存有3块,Stack、Memory Mapping Region、Heap,Stack是程序函数调用运行时需要的,不可控,能自由分配的内存就剩Memory Mapping Region、Heap了,linux系统提供的内存分配函数就是针对这两个区域的。
Heap操作函数:int brk(void *addr)、void *sbrk(intptr_t increment)
Memory Mapping Region操作函数:mmap()、munmap()

当然进程可以直接使用系统调用去申请内存,但是如果不管理的话,经过大量的申请和释放,会把进程空间切割的乱七八糟,导致不能申请大块的连续空间,为此就出现了内存管理模块,封装了系统调用,对进程提供malloc和free等高级函数。实际上,除了一些特殊程序,我们也很少用系统调用,一般都是使用内存管理模块提供的malloc和free,关系如下图:

内存管理模块用各种好处,例如不会每次操作都去执行系统调用,减少内存碎片的产生等等。
当然也有很多实现方式,例如常用的glibc的Ptmalloc,google的tcmalloc,facebook的jemalloc等。各有各的应用场景,blablabla....
使用时,gcc默认会链接glibc的,如果想使用其他lib,gcc链接时指定就能覆盖掉glibc的。

我们重点讲Ptmalloc,从而启发程序员在写程序时多考虑下内存分配情况,可以选择或自己实现适合自己程序的内存管理lib。
Ptmalloc的历史发展,blablabla......,Ptmalloc采取内存池管理,进程malloc时,通过brk(小于128K的内存)、mmap(大内存)从系统获取地址空间,给进程使用,进程free时,不会立即通过brk、munmap将地址空间还给系统,会自己维护起来,叫做空闲内存,这些空闲内存在进程再次malloc时,还会被分出去,并且空闲内存会在特定条件下合并起来还给系统。

内存分配区,管理了一片内存,对外分发和回收,可以理解为一个内存池,分main arena和non main arena。
main arena:最早的分配区,管理着所有可分配的内存,通过brk,mmap等系统调用向系统申请内存。注意只有main arena可以操作Heap。
non main arena:由于多线程的出现,如果多有线程都操作main arena就会有竞争,需要加锁控制,所以出现了non main arena,通过mmap向main arena申请一大块内存,然后自己管理,可以理解为内存分销商。
只有主线程在main arena上申请内存,子线程在non main arena上,non main arena的个数是有上限的,所以non main arena允许多个子线程共用,这样就涉及到加锁,所以程序涉及应避免子线程个数太多。

进程申请到的一块内存叫做一个内存片,arena内部使用chunk数据结构来描述内存片,包括进程正在使用的内存片,和进程free掉的空闲内存片

A:是否main arena内存
M:使用mmap内存
P:上一块是否被使用
size of previous chunk:上一块没有被使用时,表示上块长度,被使用时是上块用来存User data的。
Size of chunk:就是下一块的size of previous chunk,释放时填上本块长度,供下块合并用。

分给进程的内存片arena可以不管,但是进程free回来的,arena需要通过一定方式组织起来,方便进程再次使用。组织方式有下面几种:

bins是个数组,包含128个bin,每个bin是个链表,分small bin和large bin两种,各64个,small bin中chunk大小固定,两个相邻的small bin中的chunk大小相差8bytes,large bin中chunk大小是一定范围内的,其中的chunk按大小排列。
空闲chunk按大小选择合适的bin,按新旧顺序挂到链表上,优先分配旧的chunk。

不大于max_fast (默认值为64B)的chunk被释放后,首先会被放到fast bins 中,fast bins中的chunk并不改变它的使用标志P。这样也就无法将它们合并,当需要给用户分配的chunk小于或等于max_fast时,ptmalloc首先会在fast bins中查找相应的空闲块。在特定的时候,ptmalloc会遍历fast bins中的chunk,将相邻的空闲chunk进行合并,并将合并后的chunk加入unsorted bin中。

进行malloc时,如果在fast bins中没有找到合适的chunk,则ptmalloc会先在unsorted bin中查找合适的空闲chunk,如果unsorted bin不能满足分配要求。malloc便会将unsorted bin中的chunk加入bins中。然后再从bins中继续进行查找和分配过程。从这个过程可以看出来,unsorted bin可以看做是bins的一个缓冲区,增加它只是为了加快分配的速度。

前面的bin中都是回收回来的内存,top chunk才是内存的初始来源,每个arena都有一个top chunk,用来管理Heap的,Heap会在arena第一次分配内存时初始化,会分配一块(chunk_size + 128K) align 4K的空间(132K)作为初始的Heap,top chunk占据整个空间,每次分配会在低地址出切出一片,如下图:

回收时,只有和top chunk相连的内存才能和top chunk合并,才能进而还给系统。

子线程Heap:在main arena中mmap出64M的空间,叫做sub-heap,再在sub-heap上初始化Heap。
主线程的Heap才是真Heap,使用进程Heap,使用brk申请内存。

子线程的heap不够用时,会在申请新的sub-heap,和老的sub-heap单向链表连起来,top chunk会搬到新sub-heap上。

描述mmap出来的内存,单独管理,free时按阈值来决定是否munmap,有动态调整阈值功能,防止太频繁的mmap和munmap。本文不关注。

即最后一次small request中因分割而得到的剩余部分,它有利于改进引用局部性,也即后续对 small chunk 的 malloc 请求可能最终被分配得彼此靠近。
当用户请求 small chunk而无法从small bin和unsorted bin得到时,会在large bin中找最合适的chunk,然后做切割,返回给用户的User chunk,剩下的是Remainder chunk添加到unsorted bin中。这一Remainder chunk就将成为last remainder chunk。

下一块为高地址,前一块为低地址。

Glibc内存管理 华庭(庄明强)

❸ linux中进程的页表是自动生成的吗

是的,在进程clone的时候会复制进程页表设置只读,访问的时候触发缺页中断

❹ Linux存储管理方式

这种方式中,将用户程序的地址空间,注意,是 用户程序的地址空间 分为若干个固定大小的区域,成为“页”或“页面”。我们可以知道,这也页其实是不存在的,只是一种划分内存空间的方法。也就是说,这种方式将用户的程序 “肢解” 了,分成很多个小的部分,每个部分称为一个“页”。

将逻辑地址的前n位作为页号,后面32-n位作为页内偏移量。

由于进程的最后一页经常装不满一个块,从而形成了不可利用的碎片,称之为 “页内碎片”

作用:实现页号到物理号的地址映射。

页表是记录逻辑空间(虚拟内存)中每一页在内存中对应的物理块号。但并非每一页逻辑空间都会实际对应着一个物理块,只有实际驻留在物理内存空间中的页才会对应着物理块。

系统会为每一个进程建立一张页表,页表是需要一直驻留在物理内存中的(多级页表除外),另外页表的起址和长度存放在 PCB(Process Control Block)进程控制结构体中。

可以在页表的表项中设置相关的权限控制字段,例如设置存取控制字段,用于保护该存储块的读写;若存取控制字段为2位,则可以设置读/写、只读和只执行等存取方式。

物理块是实实在在存在于内存中的:

由于执行频率高,要求效率比较高,需要使用硬件实现。

在系统中设置一个 页表寄存器(PTR) ,其中存放页表在内存的起始地址和页表的长度。平时进程未执行的时候,页表的起始地址和页表长度放在本进程的PCB中。当调度程序调度到某个进程的时候,才将这两个数据装入 页表寄存器

变换过程:

快表的变换机构

为了提高地址变换速度,可在地址变换机构中增设一个具有并行查询能力的特殊高速缓冲寄存器,又称为"联想寄存器"或者“快表”。俗称TLB。

快表与页表的功能类似,其实就是将一部分页表存到 CPU 内部的高速缓冲存储器 Cache。CPU 寻址时先到快表查询相应的页表项形成物理地址,如果查询不到,则到内存中查询,并将对应页表项调入到快表中。但,如果快表的存储空间已满,则需要通过算法找到一个暂时不再需要的页表项,将它换出内存。

由于成本的关系,快表不可能做得很大,通常只存放 16~512 个页表项,这对中、小型作业来说,已有可能把全部页表项放在快表中;但对于大型作业而言,则只能将其一部分页表项放入其中。由于对程序和数据的访问往往带有局限性,因此,据统计,从快表中能找到所需页表项的概率可达 90% 以上。这样,由于增加了地址变换机构而造成的速度损失可减少到 10% 以下,达到了可接受的程度。

我们可以采用这样两个方法来解决这一问题:

① 对于页表所需的内存空间,可采用离散分配方式,以解决难以找到一块连续的大内存空间的问题;

只将当前需要的部分页表项调入内存,其余的页表项仍驻留在磁盘上,需要时再调入。

二级页表的页表项:

过程:

在采用两级页表结构的情况下,对于正在运行的进程,必须将其外层页表调入内存,而对于内页表则只需调入一页或几页。为了表征某页的页表是否已经调入内存,还应在外层页表项中增设一个状态位 S,其值若为 0,表示该页表分页不在内存中,否则说明其分页已调入内存。进程运行时,地址变换机构根据逻辑地址中的 P1去查找外层页表;若所找到的页表项中的状态位为 0,则产生一个中断信号,请求 OS 将该页表分页调入内存。

多级页表和二级页表类似。多级页表和二级页表是为了节省物理内存空间。使得页表可以在内存中离散存储。(单级页表为了随机访问必须连续存储,如果虚拟内存空间很大,就需要很多页表项,就需要很大的连续内存空间,但是多级页表不需要。)

为什么引入分段存储管理?

引入效果:

它将用户程序的地址空间分为若干个大小不同的的段,每个段可以定义一组完整的信息。

段号表示段名,每个段都从0开始编址,并且采用一段连续的地址空间。

在该地址结构中,允许一个作业最长有64K个段,每个段的最大长度为64KB。

在分段式存储管理系统中,为每一个分段分配一个连续的分区。进程的各个段,可以离散地装入内存中不同的分区中。

作用:实现从逻辑地址到物理内存区的映射。

为了保证程序能够正常运行,就必须能够从物理内存中找出每个逻辑段所对应的位置。为此在系统中会为每一个进程建立一张 段表 。每个段在表中有一个表项,其中记录了该段在内存中的起始地址和段的长度。一般将段表保存在内存中。

在配置了段表之后,执行的过程可以通过查找段表,找到每一个段所对应的内存区。

为了实现进程从逻辑地址到物理地址的变换功能,在系统设置了段表寄存器,用于存放段表的起始地址和段表长度TL。

在进行地址变换时,系统将逻辑地址中的段号与段表长度TL 进行比较。若 S > TL,表示段号太大,是访问越界,于是产生越界中断信号。若未越界,则根据段表的始址和该段的段号,计算出该段对应段表项的位置,从中读出该段在内存的起始地址。然后,再检查段内地址 d 是否超过该段的段长 SL。若超过,即 d>SL,同样发出越界中断信号。若未越界,则将该段的基址 d 与段内地址相加,即可得到要访问的内存。

分页和分段系统相似之处:两者都采用离散分配方式,且都是通过地址映射机构实现地址变换。

但在概念上两者完全不同,主要表现在下述三个方面:

分页系统以页面作为内存分配的基本单位,能有效地提高内存利用率,而分段系统以段作为内存分配的基本单位,它能够更好地满足用户多方面的需要。

段页式地址结构由段号、段内页号及页内地址三部分所组成

段页式系统的基本原理是分段和分页原理的结合,即先将用户程序分成若干个段,再把每个段分成若干个页,并为每一个段赋予一个段名。如下图展示了一个作业地址空间的结构。该作业有三个段:主程序段、子程序段和数据段;页面大小为 4 KB:

在段页式系统中,为了实现从逻辑地址到物理地址的变换,系统中需要同时配置段表和页表。段表的内容与分段系统略有不同,它不再是内存始址和段长,而是页表始址和页表长度。下图展示出了利用段表和页表进行从用户地址空间到物理(内存)空间的映射。

在段页式系统中,为了便于实现地址变换,须配置一个段表寄存器,其中存放段表始址和段长 TL。进行地址变换时,首先利用段号 S,将它与段长 TL 进行比较。若 S < TL,表示未越界,于是利用段表始址和段号来求出该段所对应的段表项在段表中的位置,从中得到该段的页表始址,并利用逻辑地址中的段内页号 P 来获得对应页的页表项位置,从中读出该贝所在的物理块号 b,再利用块号 b 和页内地址来构成物理地址。

在段页式系统中,为了获得一条指令或数据,须三次访问内存。第一次访问是访问内存中的段表,从中取得页表始址;第二次访问是访问内存中的页表,从中取出该页所在的物理块号,并将该块号与页内地址一起形成指令或数据的物理地址;第三次访问才是真正从第二次访问所得的地址中取出指令或数据。

显然,这使访问内存的次数增加了近两倍。为了提高执行速度,在地址变换机构中增设一个高速缓冲寄存器。每次访问它时,都须同时利用段号和页号去检索高速缓存,若找到匹配的表项,便可从中得到相应页的物理块号,用来与页内地址一起形成物理地址:若未找到匹配表项,则仍需第三次访问内存。

参考链接:

❺ Linux 进程页表存在哪里

肯定是内核空间

❻ Linux进程内存管理方法

Linux系统提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB。在Linux系统中,进程的4GB内存空间被分为两个部分——用户空间与内核空间。用户空间的地址一般分布为0~3GB(即PAGE_OFFSET,在Ox86中它等于OxC0000000),这样,剩下的3~4GB为内核空间,用户进程通常只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。用户进程只有通过系统调用(代表用户进程在内核态执行)等方式才可以访问到内核空间。每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表。而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。内核空间的虚拟地址到物理地址映射是被所有进程共享的,内核的虚拟空间独立于其他程序。Linux中1GB的内核地址空间又被划分为物理内存映射区、虚拟内存分配区、高端页面映射区、专用页面映射区和系统保留映射区这几个区域。对于x86系统而言,一般情况下,物理内存映射区最大长度为896MB,系统的物理内存被顺序映射在内核空间的这个区域中。当系统物理内存大于896MB时,超过物理内存映射区的那部分内存称为高端内存(而未超过物理内存映射区的内存通常被称为常规内存),内核在存取高端内存时必须将它们映射到高端页面映射区。Linux保留内核空间最顶部FIXADDR_TOP~4GB的区域作为保留区。当系统物理内存超过4GB时,必须使用CPU的扩展分页(PAE)模式所提供的64位页目录项才能存取到4GB以上的物理内存,这需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以后的CPU允许内存最大可配置到64GB,它们具备36位物理地址空间寻址能力。由此可见,对于32位的x86而言,在3~4GB之间的内核空间中,从低地址到高地址依次为:物理内存映射区隔离带vmalloc虚拟内存分配器区隔离带高端内存映射区专用页面映射区保留区。

❼ linux kernel 内存管理-页表、TLB

页表用来把虚拟页映射到物理页,并且存放页的保护位(即访问权限)。
在Linux4.11版本以前,Linux内核把页表分为4级:
页全局目录表(PGD)、页上层目录(PUD)、页中间目录(PMD)、直接页表(PT)
4.11版本把页表扩展到5级,在页全局目录和页上层目录之间增加了 页四级目录(P4D)
各处处理器架构可以选择使用5级,4级,3级或者2级页表,同一种处理器在页长度不同的情况可能选择不同的页表级数。可以使用配置宏CONFIG_PGTABLE_LEVELS配置页表的级数,一般使用默认值。
如果选择4级页表,那么使用PGD,PUD,PMD,PT;如果使用3级页表,那么使用PGD,PMD,PT;如果选择2级页表,那么使用PGD和PT。 如果不使用页中间目录 ,那么内核模拟页中间目录,调用函数pmd_offset 根据页上层目录表项和虚拟地址获取页中间目录表项时 直接把页上层目录表项指针强制转换成页中间目录表项

每个进程有独立的页表,进程的mm_struct实例的成员pgd指向页全局目录,前面四级页表的表项存放下一级页表的起始地址,直接页表的页表项存放页帧号(PFN)
内核也有一个页表, 0号内核线程的进程描述符init_task的成员active_mm指向内存描述符init_mm,内存描述符init_mm的成员pgd指向内核的页全局目录swapper_pg_dir

ARM64处理器把页表称为转换表,最多4级。ARM64处理器支持三种页长度:4KB,16KB,64KB。页长度和虚拟地址的宽度决定了转换表的级数,在虚拟地址的宽度为48位的条件下,页长度和转换表级数的关系如下所示:

ARM64处理器把表项称为描述符,使用64位的长描述符格式。描述符的0bit指示描述符是不是有效的:0表示无效,1表示有效。第1位指定描述符类型。
在块描述符和页描述符中,内存属性被拆分为一个高属性和一个低属性块。

处理器的MMU负责把虚拟地址转换成物理地址,为了改进虚拟地址到物理地址的转换速度,避免每次转换都需要查询内存中的页表,处理器厂商在管理单元里加了称为TLB的高速缓存,TLB直译为转换后备缓冲区,意译为页表缓存。
页表缓存用来缓存最近使用过的页表项, 有些处理器使用两级页表缓存 第一级TLB分为指令TLB和数据TLB,好处是取指令和取数据可以并行;第二级TLB是统一TLB,即指令和数据共用的TLB

不同处理器架构的TLB表项的格式不同。ARM64处理器的每条TLB表项不仅包含虚拟地址和物理地址,也包含属性:内存类型、缓存策略、访问权限、地址空间标识符(ASID)和虚拟机标识符(VMID)。 地址空间标识符区分不同进程的页表项 虚拟机标识符区分不同虚拟机的页表项

如果内核修改了可能缓存在TLB里面的页表项,那么内核必须负责使旧的TLB表项失效,内核定义了每种处理器架构必须实现的函数。

当TLB没有命中的时候,ARM64处理器的MMU自动遍历内存中的页表,把页表项复制到TLB,不需要软件把页表项写到TLB,所以ARM64架构没有提供写TLB的指令。

为了减少在进程切换时清空页表缓存的需要,ARM64处理器的页表缓存使用非全局位区分内核和进程的页表项(nG位为0表示内核的页表项), 使用地址空间标识符(ASID)区分不同进程的页表项
ARM64处理器的ASID长度是由具体实现定义的,可以选择8位或者16位。寄存器TTBR0_EL1或者TTBR1_EL1都可以用来存放当前进程的ASID,通常使用寄存器TCR_EL1的A1位决定使用哪个寄存器存放当前进程的ASID,通常使用寄存器 TTBR0_EL1 。寄存器TTBR0_EL1的位[63:48]或者[63:56]存放当前进程的ASID,位[47:1]存放当前进程的页全局目录的物理地址。
在SMP系统中,ARM64架构要求ASID在处理器的所有核是唯一的。假设ASID为8位,ASID只有256个值,其中0是保留值,可分配的ASID范围1~255,进程的数量可能超过255,两个进程的ASID可能相同,内核引入ASID版本号解决这个问题。
(1)每个进程有一个64位的软件ASID, 低8位存放硬件ASID,高56位存放ASID版本号
(2) 64位全局变量asid_generation的高56位保存全局ASID版本号
(3) 当进程被调度时,比较进程的ASID版本号和全局版本号 。如果版本号相同,那么直接使用上次分配的ASID,否则需要给进程重新分配硬件ASID。
存在空闲ASID,那么选择一个分配给进程。不存在空闲ASID时,把全局ASID版本号加1,重新从1开始分配硬件ASID,即硬件ASID从255回绕到1。因为刚分配的硬件ASID可能和某个进程的ASID相同,只是ASID版本号不同,页表缓存可能包含了这个进程的页表项,所以必须把所有处理器的页表缓存清空。
引入ASID版本号的好处是:避免每次进程切换都需要清空页表缓存,只需要在硬件ASID回环时把处理器的页表缓存清空

虚拟机里面运行的客户操作系统的虚拟地址转物理地址分两个阶段:
(1) 把虚拟地址转换成中间物理地址,由客户操作系统的内核控制 ,和非虚拟化的转换过程相同。
(2) 把中间物理地址转换成物理地址,由虚拟机监控器控制 ,虚拟机监控器为每个虚拟机维护一个转换表,分配一个虚拟机标识符,寄存器 VTTBR_EL2 存放当前虚拟机的阶段2转换表的物理地址。
每个虚拟机有独立的ASID空间 ,页表缓存使用 虚拟机标识符 区分不同虚拟机的转换表项,避免每次虚拟机切换都要清空页表缓存,在虚拟机标识符回绕时把处理器的页表缓存清空。

阅读全文

与linux页表进程相关的资料

热点内容
安卓快手下载怎么没有下载到本地 浏览:228
怎么在安卓手机登绘旅人 浏览:404
桌面文件全部加密 浏览:401
6s怎么外接u盘需要什么app 浏览:131
linux查看文件权限命令 浏览:685
安卓手游存档怎么用 浏览:761
linuxyum安装ftp 浏览:690
村委会主任可以推行政命令吗 浏览:102
电脑文件夹封面多张图片 浏览:263
网吧总服务器叫什么 浏览:922
多个算法解决同一个问题 浏览:455
小车解压后我的购车发票呢 浏览:977
做app开发用什么云服务器 浏览:177
linux网卡子接口 浏览:985
21岁职高毕业学程序员怎么学 浏览:321
vs如何对单个文件编译 浏览:6
为什么有的电脑不能安装python 浏览:75
金蝶迷你版加密狗检测到过期 浏览:186
硬件描述语言编译结果 浏览:655
程序员逆天改命 浏览:19