Ⅰ 51单片机最小系统原理图,求通俗易懂的讲解
我是一名电子信息大专毕业的学生,下面51单片机最小系统的讲解,你参考一下
51单片机共有40只引脚.
下面这个就是最小系统原理图,就是靠这四个部分,这个单片机就可以运行起来了.
一,一讲解:
第一部分:电源组(上图标记为1的部分)
40脚接电源5V,20脚接电源负极,在单片机里面,负极也可以叫GND或者”地”,我们在单片机的应用中,习惯说负极为”地”,上面GND就是英文ground的缩写,翻译过来就是"地"的意思.
第二部分:晶振组(上图标记为2的部分)
11.0592M晶振Y1与单片机的18,19脚并联,因为这两只脚,就是晶振工作的引脚.
22p电容C2一端接18脚,一端接地.
22p电容C3一端接19脚,一端接地.
这两个电容,我们在10~30P之间选择都是可以的,主要作用是,过滤掉晶振部分的高频信号,让晶振工作的时候更加稳定.
第三部分:复位组(上图标记为2的部分)
10u电容C1正极接电源5V,C1负极接单片机的复位脚,第9脚.
1K电阻R17一端接单片机的复位脚,第9脚,一端接地.
就是通过这个10u和1k,就可以让单片机一供电时,单片机自动复位,从零开始执行程序,这个就是复位的概念.
第四部分:其它功能组(上图标记为4的部分)
这个脚是存储器使用选择脚,当这个脚接"地"时,那么告诉单片机选择外部存储器,当这个脚接"5V"时,说明单片机使用内部存储器.
因为选择外部存储器,太浪费单片机仅有的资源,所以这一脚永远接电源5V(如上图所示),使用单片机的内部存储器,如果内部存储器不够容量,最多选择更高级容量的单片机型号,就可以解决问题了.
详细看下面的帖子,单片机最小系统的通俗易懂讲解:
网页链接
满意请采纳,谢谢!
Ⅱ 急求!!!在c51单片机上的三角波信号发生器,求原理图与c程序代码.
**************************************/
/* 信号发生器 (正弦波,方波,三角波)
*/
/*************************************/ #include<reg52.h> #include <intrins.h> #define uchar unsigned char #define uint unsigned int
sbit cs=P2^0; //tlc5615片选端口 sbit clk=P2^1; //tlc5615时钟线 sbit din=P2^2;
//tlc5615传输端口
sbit key1=P1^0; sbit key2=P1^1;
//按键的单片机接口
uchar keydat;
uchar flag;
//波形发生终止信号的标志位 一旦
被置零立马停止发信号
uchar flagsqu; //方波高低电平控制为(运用定时器1
中断控制)
uchar m,num; uchar dat=0xff;
uchar code tosin[141]={ //正弦波的编码
0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,<a href="http://www.jsykyy.com/" target="_blank">涂料加盟</a>0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b, 0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45, 0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63, 0x66,0x69,0x6c,0x6f,0x70,0x71,0x72,0x73,0x74,0x75, 0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7e, 0x7f,0x80,0x7f,0x7e,0x7e,0x7d,0x7c,0x7b,0x7a,0x79, 0x78,0x77,0x76,0x75,0x74,0x73,0x72,0x6f,0x6c,0x69, 0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c, 0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30, 0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a, 0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a, 0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,
0x00};
Ⅲ 单片机编写四人抢答器的程序和画出电路图并且解释程序和电路图原理
1脚VCC2和8脚VCC1接5V。2脚X1、3脚X2夹晶振4脚GND接地5脚RST接单片机P2.56脚I/0接单片机P2.47脚SCLK接单片机P2.3编程的时候要注意这样定义一下。SBIT P2^5=RST_DS1302;SBIT P2^4=IO_DS1302;SBIT P2^3=SCLK_DS1302; 同时可以提供原理图和参考源程序。希望楼主加悬赏采用我的答案。你发email:[email protected]我会把源代码和图发给你。网络好像能传图,还有源代码加了注释就认为我重复字符太多,不好发。希望网络改进。
Ⅳ 求大神用51单片机和光敏电阻设计自动门控制系统的c语言程序代码及原理图
用数字光强度传感器比较稳定
Ⅳ 基于52单片机ISD1760语音芯片的原理图和程序代码。
#include <reg51.h>
#define uchar unsigned char
#define uint unsigned int
//******************定义端口******************//
sbit SS = P1^0;
sbit SCK = P1^1;
sbit MOSI = P1^2;
sbit MISO = P1^3;
sbit PR = P1^4;//PLAY = 0;REC = 1;
sbit STOP = P1^5;
sbit AN = P1^6;
sbit LED = P1^7;
//******************定义ISD1700状态寄存器及各标志位******************//
uchar bdata SR0_L;//SR0寄存器低位、高位
uchar bdata SR0_H;
uchar bdata SR1;//SR1寄存器
uchar APC_L = 0, APC_H = 0;//APC寄存器
uchar PLAYADDL = 0, PLAYADDH = 0;//放音指针低位、高位
uchar RECADDL = 0, RECADDH = 0;//录音指针低位、高位
sbit CMD_ERR = SR0_L^0;//SPI指令无效标志位
sbit FULL = SR0_L^1;//芯片存储空间满标志位
sbit PU = SR0_L^2;//上电标志位
sbit EOM = SR0_L^3;//EOM标志位
sbit INT = SR0_L^4;//操作完成标志位
sbit RDY = SR1^0;//芯片空闲标志位
sbit ERASE = SR1^1;//擦除标志位
sbit PLAY = SR1^2;//放音标志位
sbit REC = SR1^3;//录音标志位
//******************定义标志位******************//
uchar bdata fang;
sbit PR_fang = fang^1;//录音、放音标志位,放音=0,录音=1
sbit Erase_fang = fang^4;//擦出标志位
sbit STOP_fang = fang^7;//停止放音标志位
//******************延时μs******************//
void delay(uint time)//延时n微秒
{
while(time!=0)
{
time--;
}
}
//******************延时ms******************//
void delayms(uint time)//延时n毫秒
{
for(time; time>0; time--)
{
TH0 = 0xfc;
TL0 = 0x18;
TR0 = 1;//计数器0启动
while(TF0!=1);//计数溢出处理
TF0 = 0;
TR0 = 0;
}
}
//******************CPU初始化******************//
void cpu_init (void)
{
P1 = 0xFF;
P2 = 0xFF;
P3 = 0xFF;
TMOD = 0x01;//定时器初始化,工作于方式1
EA = 0;//关中断
fang = 0;//标志位归0
LED = 1;//关指示灯
}
//******************发送、读回数据******************//
uchar isd_senddata (uchar dat)
{
uchar i, BUF_ISD = dat;
SS = 0;
SCK = 1;
delay(4);
for(i=0; i<8; i++)
{
SCK = 0;
if((BUF_ISD&0x01)==1)
{
MOSI = 1;
}
else
{
MOSI = 0;
}
BUF_ISD = BUF_ISD >> 1;
if(MISO)
{
BUF_ISD = BUF_ISD|0x80;
}
SCK = 1;
delay(6);
}
MOSI = 0;
return(BUF_ISD);
}
//******************上电******************//
void isd_pu (void)
{
isd_senddata (0x01);
isd_senddata (0x00);
SS = 1;
delayms(50);
}
//******************停止当前操作******************//
void isd_stop (void)
{
isd_senddata (0x02);
isd_senddata (0x00);
SS = 1;
delayms(50);
}
//******************复位******************//
void isd_reset (void)
{
isd_senddata (0x03);
isd_senddata (0x00);
SS = 1;
}
//******************清除中断******************//
void isd_clr_int (void)
{
isd_senddata (0x04);
isd_senddata (0x00);
SS = 1;
}
//******************读状态寄存器内容******************//
void isd_rd_status (void)
{
isd_senddata (0x05);
isd_senddata (0x00);
isd_senddata (0x00);
SS = 1;
delay(2);
SR0_L = isd_senddata (0x05);
SR0_H = isd_senddata (0x00);
SR1 = isd_senddata (0x00);
SS = 1;
}
//******************读放音指针******************//
void isd_rd_playptr (void)
{
isd_senddata (0x06);
isd_senddata (0x00);
isd_senddata (0x00);
isd_senddata (0x00);
SS = 1;
delay(2);
SR0_L = isd_senddata (0x06);
SR0_H = isd_senddata (0x00);
PLAYADDL = isd_senddata (0x00);
PLAYADDH = isd_senddata (0x00);
SS = 1;
}
//******************下电******************//
void isd_pd (void)
{
isd_senddata (0x07);
isd_senddata (0x00);
SS = 1;
delayms(50);
}
//******************读录音指针******************//
void isd_rd_recptr (void)
{
isd_senddata (0x08);
isd_senddata (0x00);
isd_senddata (0x00);
isd_senddata (0x00);
SS = 1;
delay(2);
SR0_L = isd_senddata (0x08);
SR0_H = isd_senddata (0x00);
RECADDL = isd_senddata (0x00);
RECADDH = isd_senddata (0x00);
SS = 1;
}
//******************读芯片ID******************//
uchar isd_devid (uchar deviceNO)
{
isd_senddata (0x09);
isd_senddata (0x00);
isd_senddata (0x00);
SS = 1;
delay(2);
isd_senddata (0x09);
isd_senddata (0x00);
deviceNO = isd_senddata (0x00);
SS = 1;
return(deviceNO);
}
//******************放音******************//
void isd_play (void)
{
isd_senddata (0x40);
isd_senddata (0x00);
SS = 1;
}
//******************录音******************//
void isd_rec (void)
{
isd_senddata (0x41);
isd_senddata (0x00);
SS = 1;
}
//******************擦除******************//
void isd_erase (void)
{
isd_senddata (0x42);
isd_senddata (0x00);
SS = 1;
}
//******************全部擦出******************//
void isd_g_erase (void)
{
isd_senddata (0x43);
isd_senddata (0x00);
SS = 1;
}
//******************读APC寄存器内容******************//
void isd_rd_apc (void)
{
isd_senddata (0x44);
isd_senddata (0x00);
isd_senddata (0x00);
isd_senddata (0x00);
SS = 1;
delay(2);
SR0_L = isd_senddata (0x44);
SR0_H = isd_senddata (0x00);
APC_L = isd_senddata (0x00);
APC_H = isd_senddata (0x00);
SS = 1;
}
//******************写APC寄存器******************//
void isd_wr_apc2 (uchar apcdatl,apcdath)
{
isd_senddata (0x65);
isd_senddata (apcdatl);
isd_senddata (apcdath);
SS = 1;
}
//******************将APC寄存器内容写入NVCFG******************//
void isd_wr_nvcfg (uchar apcdatl,apcdath)
{
isd_senddata (0x46);
isd_senddata (apcdatl);
isd_senddata (apcdath);
SS = 1;
}
//******************将NVCFG内容写入APC******************//
void isd_ld_nvcfg (void)
{
isd_senddata (0x47);
isd_senddata (0x00);
SS = 1;
}
//******************快进******************//
void isd_fwd (void)
{
isd_senddata (0x48);
isd_senddata (0x00);
SS = 1;
}
//******************空检查******************//
void isd_chk_mem (void)
{
isd_senddata (0x49);
isd_senddata (0x00);
SS = 1;
}
//******************外部时钟的启用、关闭******************//
void isd_extclk (void)
{
isd_senddata (0x4a);
isd_senddata (0x00);
SS = 1;
}
//******************指定地址放音******************//
void isd_set_play (uchar saddl,saddh,eaddl,eaddh)
{
isd_senddata (0x80);
isd_senddata (0x00);
isd_senddata (saddl);
isd_senddata (saddh);
isd_senddata (eaddl);
isd_senddata (eaddh);
isd_senddata (0x00);
SS = 1;
}
//******************指定地址录音******************//
void isd_set_rec (uchar saddl,saddh,eaddl,eaddh)
{
isd_senddata (0x81);
isd_senddata (0x00);
isd_senddata (saddl);
isd_senddata (saddh);
isd_senddata (eaddl);
isd_senddata (eaddh);
isd_senddata (0x00);
SS = 1;
}
//******************指定地址擦除******************//
void isd_set_erase (uchar saddl,saddh,eaddl,eaddh)
{
isd_senddata (0x82);
isd_senddata (0x00);
isd_senddata (saddl);
isd_senddata (saddh);
isd_senddata (eaddl);
isd_senddata (eaddh);
isd_senddata (0x00);
SS = 1;
}
//******************芯片系统初始化******************//
void isd_init (void)
{
uchar i = 2;
SS = 1;
SCK = 1;
MOSI = 0;
do
{
isd_pu ();
isd_rd_status ();
}while(CMD_ERR||(!PU));
isd_wr_apc2 (0x40,0x04);
do
{
isd_rd_status ();
}while(RDY==0);
do
{
LED = 0;
delayms(300);
LED = 1;
delayms(300);
i--;
}while(i>0);
}
//******************isd1700的相关操作******************//
void isdwork (void)
{
uchar i;
switch (fang)
{
case 0x00:
{
do
{
isd_rd_status ();
}while(RDY==0);
delayms(10);
isd_play ();
delayms(2);
LED = 0;
do
{
isd_rd_status ();
if(STOP==0)
{
delayms (10);
if(STOP==0)
{
LED = 1;
isd_clr_int ();
isd_stop ();
isd_reset ();
isd_pd ();
isd_init ();
return;
}
}
}while(PLAY==1);
LED = 1;
isd_clr_int ();
do
{
isd_rd_status ();
}while(RDY==0);
delayms (10);
isd_fwd ();
do
{
isd_rd_status ();
}while(RDY==0);
}
break;
case 0x02:
{
isd_clr_int ();
do
{
isd_rd_status ();
}while(RDY==0);
delayms(10);
isd_rec ();
delayms(2);
LED = 0;
do
{
isd_rd_status ();
if(FULL==1)
{
for(i=3; i>0; i--)
{
LED = 0;
delayms (300);
LED = 1;
delayms (200);
}
}
}while(AN==0);
isd_clr_int ();
isd_stop ();
LED = 1;
}
break;
case 0x10:
{
do
{
isd_rd_status ();
}while(RDY==0);
delayms (10);
isd_g_erase ();
delayms (2);
do
{
isd_rd_status ();
}while(RDY==0);
for(i=3; i>0; i--)
{
LED = 0;
delayms (300);
LED = 1;
delayms (200);
}
}
break;
case 0x80:
{
isd_clr_int ();
isd_stop ();
isd_reset ();
isd_pd ();
}
break;
}
}
//******************主程序******************//
void main (void)
{
uchar i;
cpu_init ();
delayms (1);
isd_init ();
while(1)
{
if(AN==0)
{
delayms (10);
if(AN==0)
{
if(PR==1)
{
PR_fang = 1;
}
else
{
PR_fang = 0;
}
isdwork ();
}
}
if(STOP==0)
{
delayms (10);
if(STOP==0)
{
for(i=100; i>0; i--)
{
if(STOP==1)
{
STOP_fang = 1;
isdwork ();
isd_init ();
break;
}
delayms(30);
}
if (STOP_fang==1)
{
fang = 0;
continue;
}
Erase_fang = 1;
isdwork ();
}
}
}
}
这个是按键录放的例程,你可以根据这个例程自己修改一下
Ⅵ 基于51单片机的液晶显示温度计原理图和程序(采用18b20,高分答谢!!
//DS18B20温度检测及其液晶显示
#include<reg51.h> //包含单片机寄存器的头文件
#include<intrins.h> //包含_nop_()函数定义的头文件
unsigned char code digit[10]={"0123456789"}; //定义字符数组显示数字
unsigned char code Str[]={"Test by DS18B20"}; //说明显示的是温度
unsigned char code Error[]={"Error!Check!"}; //说明没有检测到DS18B20
unsigned char code Temp[]={"Temp:"}; //说明显示的是温度
unsigned char code Cent[]={"Cent"}; //温度单位
/*******************************************************************************
以下是对液晶模块的操作程序
*******************************************************************************/
sbit RS=P2^7; //寄存器选择位,将RS位定义为P2.0引脚
sbit RW=P2^6; //读写选择位,将RW位定义为P2.1引脚
sbit E=P2^5; //使能信号位,将E位定义为P2.2引脚
sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚
/*****************************************************
函数功能:延时1ms
(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒
***************************************************/
void delay1ms()
{
unsigned char i,j;
for(i=0;i<4;i++)
for(j=0;j<33;j++)
;
}
/*****************************************************
函数功能:延时若干毫秒
入口参数:n
***************************************************/
void delaynms(unsigned char n)
{
unsigned char i;
for(i=0;i<n;i++)
delay1ms();
}
/*****************************************************
函数功能:判断液晶模块的忙碌状态
返回值:result。result=1,忙碌;result=0,不忙
***************************************************/
bit BusyTest(void)
{
bit result;
RS=0; //根据规定,RS为低电平,RW为高电平时,可以读状态
RW=1;
E=1; //E=1,才允许读写
_nop_(); //空操作
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
result=BF; //将忙碌标志电平赋给result
E=0; //将E恢复低电平
return result;
}
/*****************************************************
函数功能:将模式设置指令或显示地址写入液晶模块
入口参数:dictate
***************************************************/
void WriteInstruction (unsigned char dictate)
{
while(BusyTest()==1); //如果忙就等待
RS=0; //根据规定,RS和R/W同时为低电平时,可以写入指令
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
_nop_();
_nop_(); //空操作两个机器周期,给硬件反应时间
P0=dictate; //将数据送入P0口,即写入指令或地址
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:指定字符显示的实际地址
入口参数:x
***************************************************/
void WriteAddress(unsigned char x)
{
WriteInstruction(x|0x80); //显示位置的确定方法规定为"80H+地址码x"
}
/*****************************************************
函数功能:将数据(字符的标准ASCII码)写入液晶模块
入口参数:y(为字符常量)
***************************************************/
void WriteData(unsigned char y)
{
while(BusyTest()==1);
RS=1; //RS为高电平,RW为低电平时,可以写入数据
RW=0;
E=0; //E置低电平(根据表8-6,写指令时,E为高脉冲,
// 就是让E从0到1发生正跳变,所以应先置"0"
P0=y; //将数据送入P0口,即将数据写入液晶模块
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=1; //E置高电平
_nop_();
_nop_();
_nop_();
_nop_(); //空操作四个机器周期,给硬件反应时间
E=0; //当E由高电平跳变成低电平时,液晶模块开始执行命令
}
/*****************************************************
函数功能:对LCD的显示模式进行初始化设置
***************************************************/
void LcdInitiate(void)
{
delaynms(15); //延时15ms,首次写指令时应给LCD一段较长的反应时间
WriteInstruction(0x38); //显示模式设置:16×2显示,5×7点阵,8位数据接口
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38);
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x38); //连续三次,确保初始化成功
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x0c); //显示模式设置:显示开,无光标,光标不闪烁
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x06); //显示模式设置:光标右移,字符不移
delaynms(5); //延时5ms,给硬件一点反应时间
WriteInstruction(0x01); //清屏幕指令,将以前的显示内容清除
delaynms(5); //延时5ms,给硬件一点反应时间
}
/************************************************************************
以下是DS18B20的操作程序
************************************************************************/
sbit DQ=P3^3;
unsigned char time; //设置全局变量,专门用于严格延时
/*****************************************************
函数功能:将DS18B20传感器初始化,读取应答信号
出口参数:flag
***************************************************/
bit Init_DS18B20(void)
{
bit flag; //储存DS18B20是否存在的标志,flag=0,表示存在;flag=1,表示不存在
DQ = 1; //先将数据线拉高
for(time=0;time<2;time++) //略微延时约6微秒
;
DQ = 0; //再将数据线从高拉低,要求保持480~960us
for(time=0;time<200;time++) //略微延时约600微秒
; //以向DS18B20发出一持续480~960us的低电平复位脉冲
DQ = 1; //释放数据线(将数据线拉高)
for(time=0;time<10;time++)
; //延时约30us(释放总线后需等待15~60us让DS18B20输出存在脉冲)
flag=DQ; //让单片机检测是否输出了存在脉冲(DQ=0表示存在)
for(time=0;time<200;time++) //延时足够长时间,等待存在脉冲输出完毕
;
return (flag); //返回检测成功标志
}
/*****************************************************
函数功能:从DS18B20读取一个字节数据
出口参数:dat
***************************************************/
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat; //储存读出的一个字节数据
for (i=0;i<8;i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ = 0; //单片机从DS18B20读书据时,将数据线从高拉低即启动读时序
dat>>=1;
_nop_(); //等待一个机器周期
DQ = 1; //将数据线"人为"拉高,为单片机检测DS18B20的输出电平作准备
for(time=0;time<2;time++)
; //延时约6us,使主机在15us内采样
if(DQ==1)
dat|=0x80; //如果读到的数据是1,则将1存入dat
else
dat|=0x00;//如果读到的数据是0,则将0存入dat
//将单片机检测到的电平信号DQ存入r[i]
for(time=0;time<8;time++)
; //延时3us,两个读时序之间必须有大于1us的恢复期
}
return(dat); //返回读出的十进制数据
}
/*****************************************************
函数功能:向DS18B20写入一个字节数据
入口参数:dat
***************************************************/
WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=0; i<8; i++)
{
DQ =1; // 先将数据线拉高
_nop_(); //等待一个机器周期
DQ=0; //将数据线从高拉低时即启动写时序
DQ=dat&0x01; //利用与运算取出要写的某位二进制数据,
//并将其送到数据线上等待DS18B20采样
for(time=0;time<10;time++)
;//延时约30us,DS18B20在拉低后的约15~60us期间从数据线上采样
DQ=1; //释放数据线
for(time=0;time<1;time++)
;//延时3us,两个写时序间至少需要1us的恢复期
dat>>=1; //将dat中的各二进制位数据右移1位
}
for(time=0;time<4;time++)
; //稍作延时,给硬件一点反应时间
}
/******************************************************************************
以下是与温度有关的显示设置
******************************************************************************/
/*****************************************************
函数功能:显示没有检测到DS18B20
***************************************************/
void display_error(void)
{
unsigned char i;
WriteAddress(0x00); //写显示地址,将在第1行第1列开始显示
i = 0; //从第一个字符开始显示
while(Error[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Error[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(100); //延时100ms较长时间,以看清关于显示的说明
}
while(1) //进入死循环,等待查明原因
;
}
/*****************************************************
函数功能:显示说明信息
***************************************************/
void display_explain(void)
{
unsigned char i;
WriteAddress(0x00); //写显示地址,将在第1行第1列开始显示
i = 0; //从第一个字符开始显示
while(Str[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Str[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(100); //延时100ms较长时间,以看清关于显示的说明
}
}
/*****************************************************
函数功能:显示温度符号
***************************************************/
void display_symbol(void)
{
unsigned char i;
WriteAddress(0x40); //写显示地址,将在第2行第1列开始显示
i = 0; //从第一个字符开始显示
while(Temp[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Temp[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(50); //延时1ms给硬件一点反应时间
}
}
/*****************************************************
函数功能:显示温度的小数点
***************************************************/
void display_dot(void)
{
WriteAddress(0x49); //写显示地址,将在第2行第10列开始显示
WriteData('.'); //将小数点的字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:显示温度的单位(Cent)
***************************************************/
void display_cent(void)
{
unsigned char i;
WriteAddress(0x4c); //写显示地址,将在第2行第13列开始显示
i = 0; //从第一个字符开始显示
while(Cent[i] != '\0') //只要没有写到结束标志,就继续写
{
WriteData(Cent[i]); //将字符常量写入LCD
i++; //指向下一个字符
delaynms(50); //延时1ms给硬件一点反应时间
}
}
/*****************************************************
函数功能:显示温度的整数部分
入口参数:x
***************************************************/
void display_temp1(unsigned char x)
{
unsigned char j,k,l; //j,k,l分别储存温度的百位、十位和个位
j=x/100; //取百位
k=(x%100)/10; //取十位
l=x%10; //取个位
WriteAddress(0x46); //写显示地址,将在第2行第7列开始显示
WriteData(digit[j]); //将百位数字的字符常量写入LCD
WriteData(digit[k]); //将十位数字的字符常量写入LCD
WriteData(digit[l]); //将个位数字的字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:显示温度的小数数部分
入口参数:x
***************************************************/
void display_temp2(unsigned char x)
{
WriteAddress(0x4a); //写显示地址,将在第2行第11列开始显示
WriteData(digit[x]); //将小数部分的第一位数字字符常量写入LCD
delaynms(50); //延时1ms给硬件一点反应时间
}
/*****************************************************
函数功能:做好读温度的准备
***************************************************/
void ReadyReadTemp(void)
{
Init_DS18B20(); //将DS18B20初始化
WriteOneChar(0xCC); // 跳过读序号列号的操作
WriteOneChar(0x44); // 启动温度转换
for(time=0;time<100;time++)
; //温度转换需要一点时间
Init_DS18B20(); //将DS18B20初始化
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器,前两个分别是温度的低位和高位
}
/*****************************************************
函数功能:主函数
***************************************************/
void main(void)
{
unsigned char TL; //储存暂存器的温度低位
unsigned char TH; //储存暂存器的温度高位
unsigned char TN; //储存温度的整数部分
unsigned char TD; //储存温度的小数部分
LcdInitiate(); //将液晶初始化
delaynms(5); //延时5ms给硬件一点反应时间
if(Init_DS18B20()==1)
display_error();
display_explain();
display_symbol(); //显示温度说明
display_dot(); //显示温度的小数点
display_cent(); //显示温度的单位
while(1) //不断检测并显示温度
{
ReadyReadTemp(); //读温度准备
TL=ReadOneChar(); //先读的是温度值低位
TH=ReadOneChar(); //接着读的是温度值高位
TN=TH*16+TL/16; //实际温度值=(TH*256+TL)/16,即:TH*16+TL/16
//这样得出的是温度的整数部分,小数部分被丢弃了
TD=(TL%16)*10/16; //计算温度的小数部分,将余数乘以10再除以16取整,
//这样得到的是温度小数部分的第一位数字(保留1位小数)
display_temp1(TN); //显示温度的整数部分
display_temp2(TD); //显示温度的小数部分
delaynms(10);
}
}
//Download by http://www.codefans.net
Ⅶ HT89C51单片机编程,程序和原理图
这个用液晶显示加好,数码管的话,显示有点紧张。键盘可以用4*4矩阵键盘,proteus仿真的话,最好用小计算器键盘。
Ⅷ 单片机7个灯同时同时亮同时熄 间隔为1秒 程序怎么写 原理图怎么画 急急急
单片机7个灯同时亮,同时灭,间隔1秒,程序编写重点和方法如下。先给那七个口位申明,再写延时函数。主函数里面来个死循环,再先点亮,延时函数,延时一秒,再让其熄灭。
Ⅸ 单片机编程: P1口8个灯从低位到高位依次点亮(流水灯),遇到外部中断1,8个灯亮点 。求电路原理
ORG0000H
LJMPMAIN
ORG0013H
LJMPEXT1
ORG0030H
MAIN:
MOVA,#0FEH
LOOP:
MOVP1,A
RLA
LCALLDELAY
SJMPLOOP
EXT1:
MOVP1,#00H
MOVR7,#10
DD:
LCALLDELAY
DJNZR7,DD
RETI
DELAY:
MOVR2,#200
DLY:
MOVR3,#250
DJNZR3,$
DJNZR2,DLY
RET
END
Ⅹ C51单片机:用数码管显示0到999的值。求c语言程序和原理图
#include<reg51.h>
#define uchar unsigned char
uchar temp;
int key1,key,disbuf;// 此表为 LED 的字模 0 1 2 3 4 5 6 7 8 9 a b c d e f
unsigned char code LED7Code[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71};
unsigned char ledx[8];
bit s0,s1;
void delay(uchar z)
{
uchar i,j;
for(i=0;i<120;i++)
for(j=0;j<z;j++);
}
void scan() //要是按键了,扫描键盘编码值
{
P1=0xF0;
delay(1);
temp=P1;
switch(temp)
{
case 0xe0: key1=0;
break;
case 0xd0: key1=1;
break;
case 0xb0: key1=2;
break;
case 0x70: key1=3;
break;
}
P1=0x0f;
delay(1);
temp=P1;
switch(temp)
{
case 0x0E: key=key1+0;
break;
case 0x0D: key=key1+4;
break;
case 0x0B: key=key1+8;
break;
case 0x07: key=key1+12;
break;
default : key=-1;
}
if((key1+1)&&(key+1)) disbuf=key;
}
void ejjc() //判断是否按键
{
P1=0xF0;
if(P1!=0xF0) { scan();s0=1;}
else { s0=0; s1=1;}
}
void main()
{
uchar i;
while(1)
{
ejjc();
if(s0==1 && s1==1)
{
s0=0;s1=0;
for(i=0;i<8;i++)
{ ledx[i]=ledx[i+1]; ledx[8]=disbuf; }
}
P0=0xff;
P2=LED7Code[ledx[0]];
P0=0xfe;
delay(5);
P0=0xff;
P2=LED7Code[ledx[1]];
P0=0xfd;
delay(5);
P0=0xff;
P2=LED7Code[ledx[2]];
P0=0xfb;
delay(5);
P0=0xff;
P2=LED7Code[ledx[3]];
P0=0xf7;
delay(5);
P0=0xff;
P2=LED7Code[ledx[4]];
P0=0xef;
delay(5);
P0=0xff;
P2=LED7Code[ledx[5]];
P0=0xdf;
delay(5);
P0=0xff;
P2=LED7Code[ledx[6]];
P0=0xbf;
delay(5);
P0=0xff;
P2=LED7Code[ledx[7]];
P0=0x7f;
delay(5);
}
}