① linux中内核参数somaxconn
在Linux中,/proc/sys/net/core/somaxconn这个参数,linux中内核的一个不错的参数somaxconn。
对于一个TCP连接,Server与Client需要通过三次握手来建立网络连接.当三次握手成功后,
我们可以看到端口的状态由LISTEN转变为ESTABLISHED,接着这条链路上就可以开始传送数据了.
每一个处于监听(Listen)状态的端口,都有自己的监听队列.监听队列的长度,与如下两方面有关:
- somaxconn参数.
- 使用该端口的程序中listen()函数.
1. 关于somaxconn参数:
定义了系统中每一个端口最大的监听队列的长度,这是个全局的参数,默认值为1024,具体信息为:
Purpose:
Specifies the maximum listen backlog.
Values:
Default: 1024 connections
Range: 0 to MAXSHORT
Type: Connect
Diagnosis:
N/A
Tuning
Increase this parameter on busy Web servers to handle peak connection rates.
看下FREEBSD的解析:
限制了接收新 TCP 连接侦听队列的大小。对于一个经常处理新连接的高负载 web服务环境来说,默认的128太小了(web服务器listen函数的backlog会给我们内核参数的net.core.somaxconn先知道128,比如nginx)。大多数环境这个值建议增加到 1024 或者更多。 服务进程会自己限制侦听队列的大小(例如 sendmail(8) 或者 Apache),常常在它们的配置文件中有设置队列大小的选项。大的侦听队列对防止拒绝服务 DoS 攻击也会有所帮助。
socket tcp的backlog的上限是min(backlog,somaxconn),其中backlog是应用程序中传递给listen系统调用的参数值,somaxconn是内核规定的最大连接数。
② linux 下listen调用的backlog设为0,有何意义
listen的backlog参数指定的是已经三次握手完成,达到了established状态但是等待accept的队列的容量。当这个容量超过上限的时候服务器端便不处理客户端的三次握手了。这个队列的容量当然不是楼主所说的并发连接数。
但是lisen的再后一道程序便是accept了。如果你想要的是在tcp并发连接数量超过上限的时候服务器不再处理了三次握手那么只有两种办法:
1.关闭listen的socket
2.自己修改tcp协议栈的实现,当然这个就比较麻烦了。
用iptables防火墙来限制tcp连接,
如下,限制用户的tcp连接数为50
iptables -I INPUT-p tcp -m connlimit --connlimit-above 50 -j REJECT
③ 关于 Linux 网络,你必须知道这些
我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法。接下来,我们将进入下一个重要模块—— Linux 的网络子系统。
由于网络处理的流程最复杂,跟我们前面讲到的进程调度、中断处理、内存管理以及 I/O 等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解。
同 CPU、内存以及 I/O 一样,网络也是 Linux 系统最核心的功能。网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要通过网络才能进行。随着高并发、分布式、云计算、微服务等技术的普及,网络的性能也变得越来越重要。
说到网络,我想你肯定经常提起七层负载均衡、四层负载均衡,或者三层设备、二层设备等等。那么,这里说的二层、三层、四层、七层又都是什么意思呢?
实际上,这些层都来自国际标准化组织制定的开放式系统互联通信参考模型(Open System Interconnection Reference Model),简称为 OSI 网络模型。
但是 OSI 模型还是太复杂了,也没能提供一个可实现的方法。所以,在 Linux 中,我们实际上使用的是另一个更实用的四层模型,即 TCP/IP 网络模型。
TCP/IP 模型,把网络互联的框架分为应用层、传输层、网络层、网络接口层等四层,其中,
为了帮你更形象理解 TCP/IP 与 OSI 模型的关系,我画了一张图,如下所示:
当然了,虽说 Linux 实际按照 TCP/IP 模型,实现了网络协议栈,但在平时的学习交流中,我们习惯上还是用 OSI 七层模型来描述。比如,说到七层和四层负载均衡,对应的分别是 OSI 模型中的应用层和传输层(而它们对应到 TCP/IP 模型中,实际上是四层和三层)。
OSI引入了服务、接口、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型。
OSI先有模型,后有协议,先有标准,后进行实践;而TCP/IP则相反,先有协议和应用再提出了模型,且是参照的OSI模型。
OSI是一种理论下的模型,而TCP/IP已被广泛使用,成为网络互联事实上的标准。
有了 TCP/IP 模型后,在进行网络传输时,数据包就会按照协议栈,对上一层发来的数据进行逐层处理;然后封装上该层的协议头,再发送给下一层。
当然,网络包在每一层的处理逻辑,都取决于各层采用的网络协议。比如在应用层,一个提供 REST API 的应用,可以使用 HTTP 协议,把它需要传输的 JSON 数据封装到 HTTP 协议中,然后向下传递给 TCP 层。
而封装做的事情就很简单了,只是在原来的负载前后,增加固定格式的元数据,原始的负载数据并不会被修改。
比如,以通过 TCP 协议通信的网络包为例,通过下面这张图,我们可以看到,应用程序数据在每个层的封装格式。
这些新增的头部和尾部,增加了网络包的大小,但我们都知道,物理链路中并不能传输任意大小的数据包。网络接口配置的最大传输单元(MTU),就规定了最大的 IP 包大小。在我们最常用的以太网中,MTU 默认值是 1500(这也是 Linux 的默认值)。
一旦网络包超过 MTU 的大小,就会在网络层分片,以保证分片后的 IP 包不大于 MTU 值。显然,MTU 越大,需要的分包也就越少,自然,网络吞吐能力就越好。
理解了 TCP/IP 网络模型和网络包的封装原理后,你很容易能想到,Linux 内核中的网络栈,其实也类似于 TCP/IP 的四层结构。如下图所示,就是 Linux 通用 IP 网络栈的示意图:
我们从上到下来看这个网络栈,你可以发现,
这里我简单说一下网卡。网卡是发送和接收网络包的基本设备。在系统启动过程中,网卡通过内核中的网卡驱动程序注册到系统中。而在网络收发过程中,内核通过中断跟网卡进行交互。
再结合前面提到的 Linux 网络栈,可以看出,网络包的处理非常复杂。所以,网卡硬中断只处理最核心的网卡数据读取或发送,而协议栈中的大部分逻辑,都会放到软中断中处理。
我们先来看网络包的接收流程。
当一个网络帧到达网卡后,网卡会通过 DMA 方式,把这个网络包放到收包队列中;然后通过硬中断,告诉中断处理程序已经收到了网络包。
接着,网卡中断处理程序会为网络帧分配内核数据结构(sk_buff),并将其拷贝到 sk_buff 缓冲区中;然后再通过软中断,通知内核收到了新的网络帧。
接下来,内核协议栈从缓冲区中取出网络帧,并通过网络协议栈,从下到上逐层处理这个网络帧。比如,
最后,应用程序就可以使用 Socket 接口,读取到新接收到的数据了。
为了更清晰表示这个流程,我画了一张图,这张图的左半部分表示接收流程,而图中的粉色箭头则表示网络包的处理路径。
了解网络包的接收流程后,就很容易理解网络包的发送流程。网络包的发送流程就是上图的右半部分,很容易发现,网络包的发送方向,正好跟接收方向相反。
首先,应用程序调用 Socket API(比如 sendmsg)发送网络包。
由于这是一个系统调用,所以会陷入到内核态的套接字层中。套接字层会把数据包放到 Socket 发送缓冲区中。
接下来,网络协议栈从 Socket 发送缓冲区中,取出数据包;再按照 TCP/IP 栈,从上到下逐层处理。比如,传输层和网络层,分别为其增加 TCP 头和 IP 头,执行路由查找确认下一跳的 IP,并按照 MTU 大小进行分片。
分片后的网络包,再送到网络接口层,进行物理地址寻址,以找到下一跳的 MAC 地址。然后添加帧头和帧尾,放到发包队列中。这一切完成后,会有软中断通知驱动程序:发包队列中有新的网络帧需要发送。
最后,驱动程序通过 DMA ,从发包队列中读出网络帧,并通过物理网卡把它发送出去。
多台服务器通过网卡、交换机、路由器等网络设备连接到一起,构成了相互连接的网络。由于网络设备的异构性和网络协议的复杂性,国际标准化组织定义了一个七层的 OSI 网络模型,但是这个模型过于复杂,实际工作中的事实标准,是更为实用的 TCP/IP 模型。
TCP/IP 模型,把网络互联的框架,分为应用层、传输层、网络层、网络接口层等四层,这也是 Linux 网络栈最核心的构成部分。
我结合网络上查阅的资料和文章中的内容,总结了下网卡收发报文的过程,不知道是否正确:
当发送数据包时,与上述相反。链路层将数据包封装完毕后,放入网卡的DMA缓冲区,并调用系统硬中断,通知网卡从缓冲区读取并发送数据。
了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网络的性能情况。具体而言,哪些指标可以用来衡量 Linux 的网络性能呢?
实际上,我们通常用带宽、吞吐量、延时、PPS(Packet Per Second)等指标衡量网络的性能。
除了这些指标,网络的可用性(网络能否正常通信)、并发连接数(TCP 连接数量)、丢包率(丢包百分比)、重传率(重新传输的网络包比例)等也是常用的性能指标。
分析网络问题的第一步,通常是查看网络接口的配置和状态。你可以使用 ifconfig 或者 ip 命令,来查看网络的配置。我个人更推荐使用 ip 工具,因为它提供了更丰富的功能和更易用的接口。
以网络接口 eth0 为例,你可以运行下面的两个命令,查看它的配置和状态:
你可以看到,ifconfig 和 ip 命令输出的指标基本相同,只是显示格式略微不同。比如,它们都包括了网络接口的状态标志、MTU 大小、IP、子网、MAC 地址以及网络包收发的统计信息。
第一,网络接口的状态标志。ifconfig 输出中的 RUNNING ,或 ip 输出中的 LOWER_UP ,都表示物理网络是连通的,即网卡已经连接到了交换机或者路由器中。如果你看不到它们,通常表示网线被拔掉了。
第二,MTU 的大小。MTU 默认大小是 1500,根据网络架构的不同(比如是否使用了 VXLAN 等叠加网络),你可能需要调大或者调小 MTU 的数值。
第三,网络接口的 IP 地址、子网以及 MAC 地址。这些都是保障网络功能正常工作所必需的,你需要确保配置正确。
第四,网络收发的字节数、包数、错误数以及丢包情况,特别是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指标不为 0 时,通常表示出现了网络 I/O 问题。其中:
ifconfig 和 ip 只显示了网络接口收发数据包的统计信息,但在实际的性能问题中,网络协议栈中的统计信息,我们也必须关注。你可以用 netstat 或者 ss ,来查看套接字、网络栈、网络接口以及路由表的信息。
我个人更推荐,使用 ss 来查询网络的连接信息,因为它比 netstat 提供了更好的性能(速度更快)。
比如,你可以执行下面的命令,查询套接字信息:
netstat 和 ss 的输出也是类似的,都展示了套接字的状态、接收队列、发送队列、本地地址、远端地址、进程 PID 和进程名称等。
其中,接收队列(Recv-Q)和发送队列(Send-Q)需要你特别关注,它们通常应该是 0。当你发现它们不是 0 时,说明有网络包的堆积发生。当然还要注意,在不同套接字状态下,它们的含义不同。
当套接字处于连接状态(Established)时,
当套接字处于监听状态(Listening)时,
所谓全连接,是指服务器收到了客户端的 ACK,完成了 TCP 三次握手,然后就会把这个连接挪到全连接队列中。这些全连接中的套接字,还需要被 accept() 系统调用取走,服务器才可以开始真正处理客户端的请求。
与全连接队列相对应的,还有一个半连接队列。所谓半连接是指还没有完成 TCP 三次握手的连接,连接只进行了一半。服务器收到了客户端的 SYN 包后,就会把这个连接放到半连接队列中,然后再向客户端发送 SYN+ACK 包。
类似的,使用 netstat 或 ss ,也可以查看协议栈的信息:
这些协议栈的统计信息都很直观。ss 只显示已经连接、关闭、孤儿套接字等简要统计,而 netstat 则提供的是更详细的网络协议栈信息。
比如,上面 netstat 的输出示例,就展示了 TCP 协议的主动连接、被动连接、失败重试、发送和接收的分段数量等各种信息。
接下来,我们再来看看,如何查看系统当前的网络吞吐量和 PPS。在这里,我推荐使用我们的老朋友 sar,在前面的 CPU、内存和 I/O 模块中,我们已经多次用到它。
给 sar 增加 -n 参数就可以查看网络的统计信息,比如网络接口(DEV)、网络接口错误(EDEV)、TCP、UDP、ICMP 等等。执行下面的命令,你就可以得到网络接口统计信息:
这儿输出的指标比较多,我来简单解释下它们的含义。
其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:
其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:
我们通常使用带宽、吞吐量、延时等指标,来衡量网络的性能;相应的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,来查看这些网络的性能指标。
小狗同学问到: 老师,您好 ss —lntp 这个 当session处于listening中 rec-q 确定是 syn的backlog吗?
A: Recv-Q为全连接队列当前使用了多少。 中文资料里这个问题讲得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ
看了源码发现,这个地方讲的有问题.关于ss输出中listen状态套接字的Recv-Q表示全连接队列当前使用了多少,也就是全连接队列的当前长度,而Send-Q表示全连接队列的最大长度
④ linux 内核参数优化
一、Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现。
命令格式:
sysctl [-n] [-e] -w variable=value
sysctl [-n] [-e] -p (default /etc/sysctl.conf)
sysctl [-n] [-e] –a
常用参数的意义:
-w 临时改变某个指定参数的值,如
# sysctl -w net.ipv4.ip_forward=1
-a 显示所有的系统参数
-p从指定的文件加载系统参数,默认从/etc/sysctl.conf 文件中加载,如:
以上两种方法都可能立即开启路由功能,但如果系统重启,或执行了
# service network restart
命令,所设置的值即会丢失,如果想永久保留配置,可以修改/etc/sysctl.conf文件,将 net.ipv4.ip_forward=0改为net.ipv4.ip_forward=1
二、linux内核参数调整:linux 内核参数调整有两种方式
方法一:修改/proc下内核参数文件内容,不能使用编辑器来修改内核参数文件,理由是由于内核随时可能更改这些文件中的任意一个,另外,这些内核参数文件都是虚拟文件,实际中不存在,因此不能使用编辑器进行编辑,而是使用echo命令,然后从命令行将输出重定向至 /proc 下所选定的文件中。如:将 timeout_timewait 参数设置为30秒:
参数修改后立即生效,但是重启系统后,该参数又恢复成默认值。因此,想永久更改内核参数,需要修改/etc/sysctl.conf文件
方法二.修改/etc/sysctl.conf文件。检查sysctl.conf文件,如果已经包含需要修改的参数,则修改该参数的值,如果没有需要修改的参数,在sysctl.conf文件中添加参数。如:
net.ipv4.tcp_fin_timeout=30
保存退出后,可以重启机器使参数生效,如果想使参数马上生效,也可以执行如下命令:
三、sysctl.conf 文件中参数设置及说明
proc/sys/net/core/wmem_max
最大socket写buffer,可参考的优化值:873200
/proc/sys/net/core/rmem_max
最大socket读buffer,可参考的优化值:873200
/proc/sys/net/ipv4/tcp_wmem
TCP写buffer,可参考的优化值: 8192 436600 873200
/proc/sys/net/ipv4/tcp_rmem
TCP读buffer,可参考的优化值: 32768 436600 873200
/proc/sys/net/ipv4/tcp_mem
同样有3个值,意思是:
net.ipv4.tcp_mem[0]:低于此值,TCP没有内存压力.
net.ipv4.tcp_mem[1]:在此值下,进入内存压力阶段.
net.ipv4.tcp_mem[2]:高于此值,TCP拒绝分配socket.
上述内存单位是页,而不是字节.可参考的优化值是:786432 1048576 1572864
/proc/sys/net/core/netdev_max_backlog
进入包的最大设备队列.默认是300,对重负载服务器而言,该值太低,可调整到1000
/proc/sys/net/core/somaxconn
listen()的默认参数,挂起请求的最大数量.默认是128.对繁忙的服务器,增加该值有助于网络性能.可调整到256.
/proc/sys/net/core/optmem_max
socket buffer的最大初始化值,默认10K
/proc/sys/net/ipv4/tcp_max_syn_backlog
进入SYN包的最大请求队列.默认1024.对重负载服务器,可调整到2048
/proc/sys/net/ipv4/tcp_retries2
TCP失败重传次数,默认值15,意味着重传15次才彻底放弃.可减少到5,尽早释放内核资源.
/proc/sys/net/ipv4/tcp_keepalive_time
/proc/sys/net/ipv4/tcp_keepalive_intvl
/proc/sys/net/ipv4/tcp_keepalive_probes
这3个参数与TCP KeepAlive有关.默认值是:
tcp_keepalive_time = 7200 seconds (2 hours)
tcp_keepalive_probes = 9
tcp_keepalive_intvl = 75 seconds
意思是如果某个TCP连接在idle 2个小时后,内核才发起probe.如果probe 9次(每次75秒)不成功,内核才彻底放弃,认为该连接已失效.对服务器而言,显然上述值太大. 可调整到:
/proc/sys/net/ipv4/tcp_keepalive_time 1800
/proc/sys/net/ipv4/tcp_keepalive_intvl 30
/proc/sys/net/ipv4/tcp_keepalive_probes 3
/proc/sys/net/ipv4/ip_local_port_range
指定端口范围的一个配置,默认是32768 61000,已够大.
net.ipv4.tcp_syncookies = 1
表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
net.ipv4.tcp_tw_reuse = 1
表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
net.ipv4.tcp_tw_recycle = 1
表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
net.ipv4.tcp_fin_timeout = 30
表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间。
net.ipv4.tcp_keepalive_time = 1200
表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为20分钟。
net.ipv4.ip_local_port_range = 1024 65000
表示用于向外连接的端口范围。缺省情况下很小:32768到61000,改为1024到65000。
net.ipv4.tcp_max_syn_backlog = 8192
表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
net.ipv4.tcp_max_tw_buckets = 5000
表示系统同时保持TIME_WAIT套接字的最大数量,如果超过这个数字,TIME_WAIT套接字将立刻被清除并打印警告信息。默认为 180000,改为 5000。对于Apache、Nginx等服务器,上几行的参数可以很好地减少TIME_WAIT套接字数量,但是对于Squid,效果却不大。此项参数可以控制TIME_WAIT套接字的最大数量,避免Squid服务器被大量的TIME_WAIT套接字拖死。
Linux上的NAT与iptables
谈起Linux上的NAT,大多数人会跟你提到iptables。原因是因为iptables是目前在linux上实现NAT的一个非常好的接口。它通过和内核级直接操作网络包,效率和稳定性都非常高。这里简单列举一些NAT相关的iptables实例命令,可能对于大多数实现有多帮助。
这里说明一下,为了节省篇幅,这里把准备工作的命令略去了,仅仅列出核心步骤命令,所以如果你单单执行这些没有实现功能的话,很可能由于准备工作没有做好。如果你对整个命令细节感兴趣的话,可以直接访问我的《如何让你的Linux网关更强大》系列文章,其中对于各个脚本有详细的说明和描述。
EXTERNAL="eth0"
INTERNAL="eth1"
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -o $EXTERNAL -j MASQUERADE
LOCAL_EX_IP=11.22.33.44 #设定网关的外网卡ip,对于多ip情况,参考《如何让你的Linux网关更强大》系列文章
LOCAL_IN_IP=192.168.1.1 #设定网关的内网卡ip
INTERNAL="eth1" #设定内网卡
echo 1 > /proc/sys/net/ipv4/ip_forward
modprobe ip_conntrack_ftp
modprobe ip_nat_ftp
iptables -t nat -A PREROUTING -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10
iptables -t nat -A POSTROUTING -d 192.168.1.10 -p tcp --dport 80 -j SNAT --to $LOCAL_IN_IP
iptables -A FORWARD -o $INTERNAL -d 192.168.1.10 -p tcp --dport 80 -j ACCEPT
iptables -t nat -A OUTPUT -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10
获取系统中的NAT信息和诊断错误
了解/proc目录的意义
在Linux系统中,/proc是一个特殊的目录,proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。它包含当前系统的一些参数(variables)和状态(status)情况。它以文件系统的方式为访问系统内核数据的操作提供接口
通过/proc可以了解到系统当前的一些重要信息,包括磁盘使用情况,内存使用状况,硬件信息,网络使用情况等等,很多系统监控工具(如HotSaNIC)都通过/proc目录获取系统数据。
另一方面通过直接操作/proc中的参数可以实现系统内核参数的调节,比如是否允许ip转发,syn-cookie是否打开,tcp超时时间等。
获得参数的方式:
第一种:cat /proc/xxx/xxx,如 cat /proc/sys/net/ipv4/conf/all/rp_filter
第二种:sysctl xxx.xxx.xxx,如 sysctl net.ipv4.conf.all.rp_filter
改变参数的方式:
第一种:echo value > /proc/xxx/xxx,如 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
第二种:sysctl [-w] variable=value,如 sysctl [-w] net.ipv4.conf.all.rp_filter=1
以上设定系统参数的方式只对当前系统有效,重起系统就没了,想要保存下来,需要写入/etc/sysctl.conf文件中
通过执行 man 5 proc可以获得一些关于proc目录的介绍
查看系统中的NAT情况
和NAT相关的系统变量
/proc/slabinfo:内核缓存使用情况统计信息(Kernel slab allocator statistics)
/proc/sys/net/ipv4/ip_conntrack_max:系统支持的最大ipv4连接数,默认65536(事实上这也是理论最大值)
/proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established 已建立的tcp连接的超时时间,默认432000,也就是5天
和NAT相关的状态值
/proc/net/ip_conntrack:当前的前被跟踪的连接状况,nat翻译表就在这里体现(对于一个网关为主要功能的Linux主机,里面大部分信息是NAT翻译表)
/proc/sys/net/ipv4/ip_local_port_range:本地开放端口范围,这个范围同样会间接限制NAT表规模
cat /proc/sys/net/ipv4/ip_conntrack_max
cat /proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established
cat /proc/net/ip_conntrack
cat /proc/sys/net/ipv4/ip_local_port_range
wc -l /proc/net/ip_conntrack
grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 2;}'
grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 3;}'
cat /proc/net/ip_conntrack | cut -d ' ' -f 10 | cut -d '=' -f 2 | sort | uniq -c | sort -nr | head -n 10
cat /proc/net/ip_conntrack | perl -pe s/^(.*?)src/src/g | cut -d ' ' -f1 | cut -d '=' -f2 | sort | uniq -c | sort -nr | head -n 10
⑤ linux日志 audit
我们知道在Linux系统中有大量的日志文件可以用于查看应用程序的各种信息,但是对于用户的操作行为(如某用户修改删除了某文件)却无法通过这些日志文件来查看,如果我们想实现监管企业员工的操作行为就需要开启审计功能,也就是audit。
1、首先执行以下命令开启auditd服务
| 1 | service auditd start |
2、接着查看看auditd的服务状态,有两种方法可以实现,使用auditctl命令时主要看enabled是否为1,1为开启,0为关闭
[root@ns-master-c01 ~]``# service auditd status` |
`auditd (pid 20594) is running...
[root@ns-master-c01 ~]``# auditctl -s
| 5 | AUDIT_STATUS: enabled=1 flag=1 pid=20594 rate_limit=0 backlog_limit=320 lost=0 backlog=0 |
3、开启了autid服务后,所有的审计日志会记录在/var/log/audit/audit.log文件中,该文件记录格式是每行以type开头,其中红框处是事件发生的时间(代表从1970年1月1日到现在过了多久,可以用date命令转换格式),冒号后面的数字是事件ID,同一个事件ID是一样的。
4、audit可以自定义对指定的文件或命令进行审计(如监视rm命令被执行、/etc/passwd文件内容被改变),只要配置好对应规则即可,配置规则可以通过命令行(临时生效)或者编辑配置文件(永久生效)两种方式来实现。
命令行语法(临时生效****)****:
| 1 | auditctl -w /bin/``rm -p x -k removefile ``#-w指定所要监控的文件或命令 |
| 2 | #-p指定监控属性,如x执行、w修改 |
| 3 | #-k是设置一个关键词用于查询 |
编辑配置文件(****永久生效)****:
auditd的配置文件为/etc/audit/audit下的auditd.conf 和audit.rules,auditd.conf 主要是定义了auditd服务日志和性能等相关配置,audit.rules才是定义规则的文件,下面是一个例子,其实就是把auditctl的命令直接拿过来即可,auditctl里支持的选项都可以在这个文件里指定
修改完后重启服务
| 1 | service auditd restart |
5、如果直接使用tailf等查看工具进行日志分析会比较麻烦,好在audit已经提供了一个更好的事件查看工具—— ausea****rch, 使用auserach -h查看下该命令的用法:
这里列出几个常用的选项:
-a number #只显示事件ID为指定数字的日志信息,如只显示926事件:ausearch -a 926
-c commond #只显示和指定命令有关的事件,如只显示rm命令产生的事件:auserach -c rm
-i #显示出的信息更清晰,如事件时间、相关用户名都会直接显示出来,而不再是数字形式
-k #显示出和之前auditctl -k所定义的关键词相匹配的事件信息
通过下图可以看到每个事件被虚线分开,用户名和执行的操作也都能清晰的看到了:
6、使用auditctl还可以查看和清空规则
查看源码
<embed width="16" height="16" id="highlighter_638828_clipboard" type="application/x-shockwave-flash" title="复制到剪贴板" allowscriptaccess="always" wmode="transparent" flashvars="highlighterId=highlighter_638828" menu="false" src="http://www.linuxe.cn/content/plugins/et_highlighter51/scripts/clipboard.swf" style="margin: 0px; padding: 0px; outline: 0px; zoom: 1; max-width: 96%;">
摘自 http://www.linuxe.cn/post-255.html
| 1 | auditctl -l 查看定义的规则 |
| 2 | auditctl -D 清空定义的规则 |
⑥ listen 函数中参数 backlog
我们该如何理解 listen 函数中的参数 backlog?如果 backlog 表示的是未完成连接队列的大小,那么已完成连接的队列的大小有限制吗?如果都是已经建立连接的状态,那么并发取决于已完成连接的队列的大小吗?
backlog 的值含义从来就没有被严格定义过。原先 Linux 实现中,backlog 参数定义了该套接字对应的未完成连接队列的最大长度 (pending connections)。如果一个连接到达时,该队列已满,客户端将会接收一个 ECONNREFUSED 的错误信息,如果支持重传,该请求可能会被忽略,之后会进行一次重传。
从 Linux 2.2 开始,backlog 的参数内核有了新的语义,它现在定义的是已完成连接队列的最大长度,表示的是已建立的连接(established connection),正在等待被接收(accept 调用返回),而不是原先的未完成队列的最大长度。现在,未完成队列的最大长度值可以通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 完成修改,默认值为 128。
至于已完成连接队列,如果声明的 backlog 参数比 /proc/sys/net/core/somaxconn 的参数要大,那么就会使用我们声明的那个值。实际上,这个默认的值为 128。注意在 Linux 2.4.25 之前,这个值是不可以修改的一个固定值,大小也是 128。
设计良好的程序,在 128 固定值的情况下也是可以支持成千上万的并发连接的,这取决于 I/O 分发的效率,以及多线程程序的设计。在后面的性能篇里,我们的目标就是设计这样的程序。
https://time.geekbang.org/column/article/135735
⑦ 畅谈linux下TCP(上)
tcp 协议 是互联网中最常用的协议 , 开发人员基本上天天和它打交道,对它进行深入了解。 可以帮助我们排查定位bug和进行程序优化。下面我将就TCP几个点做深入的探讨
客户端:收到 ack 后 分配连接资源。 发送数据
服务器 : 收到 syn 后立即 分配连接资源
客户端:收到ACK, 立即分配资源
服务器:收到ACK, 立即分配资源
既然三次握手也不是100%可靠, 那四次,五次,六次。。。呢? 其实都一样,不管多少次都有丢包问题。
client 只发送一个 SYN, server 分配一个tcb, 放入syn队列中。 这时候连接叫 半连接 状态;如果server 收不到 client 的ACK, 会不停重试 发送 ACK-SYN 给client 。重试间隔 为 2 的 N 次方 叠加(2^0 , 2^1, 2^2 ....);直至超时才释放syn队列中的这个 TCB;
在半连接状态下, 一方面会占用队列配额资源,另一方面占用内存资源。我们应该让半连接状态存在时间尽可能的小
当client 向一个未打开的端口发起连接请求时,会收到一个RST回复包
当listen 的 backlog 和 somaxconn 都设置了得时候, 取两者min值
Recv-Q 是accept 队列当前个数, Send-Q 设置最大值
这种SYN洪水攻击是一种常见攻击方式,就是利用半连接队列特性,占满syn 队列的 资源,导致 client无法连接上。
解决方案:
为什么不像握手那样合并成三次挥手? 因为和刚开始连接情况,连接是大家都从0开始, 关闭时有历史包袱的。server(被动关闭方) 收到 client(主动关闭方) 的关闭请求FIN包。 这时候可能还有未发送完的数据,不能丢弃。 所以需要分开。事实可能是这样
当然,在没有待发数据,并且允许 Delay ACK 情况下, FIN-ACK合并还是非常常见的事情,这是三次挥手是可以的。
同上
CLOSE_WAIT 是被动关闭方才有的状态 。
被动关闭方 [收到 FIN 包 发送 ACK 应答] 到 [发送FIN, 收到ACK ] 期间的状态为 CLOSE_WAIT, 这个状态仍然能发送数据。 我们叫做 半关闭 , 下面用个例子来分析:
这个是我实际生产环境碰到的一个问题,长连接会话场景,server端收到client的rpc call 请求1,处理发现请求包有问题,就强制关闭结束这次会话, 但是 因为client 发送 第二次请求之前,并没有去调用recv,所以并不知道 这个连接被server关闭, 继续发送 请求2 , 此时是半连接,能够成功发送到对端机器,但是recv结果后,遇到连接已经关闭错误。
如果 client 和 server 恰好同时发起关闭连接。这种情况下,两边都是主动连接,都会进入 TIME_WAIT状态
1、 被动关闭方在LAST_ACK状态(已经发送FIN),等待主动关闭方的ACK应答,但是 ACK丢掉, 主动方并不知道,以为成功关闭。因为没有TIME_WAIT等待时间,可以立即创建新的连接, 新的连接发送SYN到前面那个未关闭的被动方,被动方认为是收到错误指令,会发送RST。导致创建连接失败。
2、 主动关闭方断开连接,如果没有TIME_WAIT等待时间,可以马上建立一个新的连接,但是前一个已经断开连接的,延迟到达的数据包。 被新建的连接接收,如果刚好seq 和 ack字段 都正确, seq在滑动窗口范围内(只能说机率非常小,但是还是有可能会发生),会被当成正确数据包接收,导致数据串包。 如果不在window范围内,则没有影响( 发送一个确认报文(ack 字段为期望ack的序列号,seq为当前发送序列号),状态变保持原样)
TIME_WAIT 问题比较比较常见,特别是CGI机器,并发量高,大量连接后段服务的tcp短连接。因此也衍生出了多种手段解决。虽然每种方法解决不是那么完美,但是带来的好处一般多于坏处。还是在日常工作中会使用。
1、改短TIME_WAIT 等待时间
这个是第一个想到的解决办法,既然等待时间太长,就改成时间短,快速回收端口。但是实际情况往往不乐观,对于并发的机器,你改多短才能保证回收速度呢,有时候几秒钟就几万个连接。太短的话,就会有前面两种问题小概率发生。
2、禁止Socket lingering
这种情况下关闭连接,会直接抛弃缓冲区中待发送的数据,会发送一个RST给对端,相当于直接抛弃TIME_WAIT, 进入CLOSE状态。同样因为取消了 TIME_WAIT 状态,会有前面两种问题小概率发生。
3、tcp_tw_reuse
net.ipv4.tcp_tw_reuse选项是 从 TIME_WAIT 状态的队列中,选取条件:1、remote 的 ip 和端口相同, 2、选取一个时间戳小于当前时间戳; 用来解决端口不足的尴尬。
现在端口可以复用了,看看如何面对前面TIME_WAIT 那两种问题。 我们仔细回顾用一下前面两种问题。 都是在新建连接中收到老连接的包导致的问题 , 那么如果我能在新连接中识别出此包为非法包,是不是就可以丢掉这些无用包,解决问题呢。
需要实现这些功能,需要扩展一下tcp 包头。 增加 时间戳字段。 发送者 在每次发送的时候。 在tcp包头里面带上发送时候的时间戳。 当接收者接收的时候,在ACK应答中除了TCP包头中带自己此时发送的时间戳,并且把收到的时间戳附加在后面。也就是说ACK包中有两个时间戳字段。结构如下:
那我们接下来一个个分析tcp_tw_reuse是如何解决TIME_WAIT的两个问题的
4、tcp_tw_recycle
tcp_tw_recycle 也是借助 timestamp机制。顾名思义, tcp_tw_reuse 是复用 端口,并不会减少 TIME-WAIT 数量。你去查询机器上TIME-WAIT 数量,还是 几千几万个,这点对有强迫症的同学感觉很不舒服。tcp_tw_recycle 是 提前 回收 TIME-WAIT资源。会减少 机器上 TIME-WAIT 数量。
tcp_tw_recycle 工作原理是。
⑧ 如何在linux下开启napi
天重点对linux网络数据包的处理做下分析,但是并不关系到上层协议,仅仅到链路层。
之前转载过一篇文章,对NAPI做了比较详尽的分析,本文结合Linux内核源代码,对当前网络数据包的处理进行梳理。根据NAPI的处理特性,对设备提出一定的要求
1、设备需要有足够的缓冲区,保存多个数据分组
2、可以禁用当前设备中断,然而不影响其他的操作。
当前大部分的设备都支持NAPI,但是为了对之前的保持兼容,内核还是对之前中断方式提供了兼容。我们先看下NAPI具体的处理方式。我们都知道中断分为中断上半部和下半部,上半部完成的任务很是简单,仅仅负责把数据保存下来;而下半部负责具体的处理。为了处理下半部,每个CPU有维护一个softnet_data结构。我们不对此结构做详细介绍,仅仅描述和NAPI相关的部分。结构中有一个poll_list字段,连接所有的轮询设备。还 维护了两个队列input_pkt_queue和process_queue。这两个用户传统不支持NAPI方式的处理。前者由中断上半部的处理函数吧数据包入队,在具体的处理时,使用后者做中转,相当于前者负责接收,后者负责处理。最后是一个napi_struct的backlog,代表一个虚拟设备供轮询使用。在支持NAPI的设备下,每个设备具备一个缓冲队列,存放到来数据。每个设备对应一个napi_struct结构,该结构代表该设备存放在poll_list中被轮询。而设备还需要提供一个poll函数,在设备被轮询到后,会调用poll函数对数据进行处理。基本逻辑就是这样,下面看下具体流程。
中断上半部:
非NAPI:
非NAPI对应的上半部函数为netif_rx,位于Dev.,c中
int netif_rx(struct sk_buff *skb)
{
int ret;
/* if netpoll wants it, pretend we never saw it */
/*如果是net_poll想要的,则不作处理*/
if (netpoll_rx(skb))
return NET_RX_DROP;
/*检查时间戳*/
net_timestamp_check(netdev_tstamp_prequeue, skb);
trace_netif_rx(skb);
#ifdef CONFIG_RPS
if (static_key_false(&rps_needed)) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu;
/*禁用抢占*/
preempt_disable();
rcu_read_lock();
cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu < 0)
cpu = smp_processor_id();
/*把数据入队*/
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
rcu_read_unlock();
preempt_enable();
} else
#endif
{
unsigned int qtail;
ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
put_cpu();
}
return ret;
}
中间RPS暂时不关心,这里直接调用enqueue_to_backlog放入CPU的全局队列input_pkt_queue
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
unsigned int *qtail)
{
struct softnet_data *sd;
unsigned long flags;
/*获取cpu相关的softnet_data变量*/
sd = &per_cpu(softnet_data, cpu);
/*关中断*/
local_irq_save(flags);
rps_lock(sd);
/*如果input_pkt_queue的长度小于最大限制,则符合条件*/
if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
/*如果input_pkt_queue不为空,说明虚拟设备已经得到调度,此时仅仅把数据加入
input_pkt_queue队列即可
*/
if (skb_queue_len(&sd->input_pkt_queue)) {
enqueue:
__skb_queue_tail(&sd->input_pkt_queue, skb);
input_queue_tail_incr_save(sd, qtail);
rps_unlock(sd);
local_irq_restore(flags);
return NET_RX_SUCCESS;
}
/* Schele NAPI for backlog device
* We can use non atomic operation since we own the queue lock
*/
/*否则需要调度backlog 即虚拟设备,然后再入队。napi_struct结构中的state字段如果标记了NAPI_STATE_SCHED,则表明该设备已经在调度,不需要再次调度*/
if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
if (!rps_ipi_queued(sd))
____napi_schele(sd, &sd->backlog);
}
goto enqueue;
}
/*到这里缓冲区已经不足了,必须丢弃*/
sd->dropped++;
rps_unlock(sd);
local_irq_restore(flags);
atomic_long_inc(&skb->dev->rx_dropped);
kfree_skb(skb);
return NET_RX_DROP;
}
该函数逻辑也比较简单,主要注意的是设备必须先添加调度然后才能接受数据,添加调度调用了____napi_schele函数,该函数把设备对应的napi_struct结构插入到softnet_data的poll_list链表尾部,然后唤醒软中断,这样在下次软中断得到处理时,中断下半部就会得到处理。不妨看下源码
static inline void ____napi_schele(struct softnet_data *sd,
struct napi_struct *napi)
{
list_add_tail(&napi->poll_list, &sd->poll_list);
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
}
NAPI方式
NAPI的方式相对于非NAPI要简单许多,看下e100网卡的中断处理函数e100_intr,核心部分
if (likely(napi_schele_prep(&nic->napi))) {
e100_disable_irq(nic);//屏蔽当前中断
__napi_schele(&nic->napi);//把设备加入到轮训队列
}
if条件检查当前设备是否 可被调度,主要检查两个方面:1、是否已经在调度 2、是否禁止了napi pending.如果符合条件,就关闭当前设备的中断,调用__napi_schele函数把设备假如到轮训列表,从而开启轮询模式。
分析:结合上面两种方式,还是可以发现两种方式的异同。其中softnet_data作为主导结构,在NAPI的处理方式下,主要维护轮询链表。NAPI设备均对应一个napi_struct结构,添加到链表中;非NAPI没有对应的napi_struct结构,为了使用NAPI的处理流程,使用了softnet_data结构中的back_log作为一个虚拟设备添加到轮询链表。同时由于非NAPI设备没有各自的接收队列,所以利用了softnet_data结构的input_pkt_queue作为全局的接收队列。这样就处理而言,可以和NAPI的设备进行兼容。但是还有一个重要区别,在NAPI的方式下,首次数据包的接收使用中断的方式,而后续的数据包就会使用轮询处理了;而非NAPI每次都是通过中断通知。
下半部:
下半部的处理函数,之前提到,网络数据包的接发对应两个不同的软中断,接收软中断NET_RX_SOFTIRQ的处理函数对应net_rx_action
static void net_rx_action(struct softirq_action *h)
{
struct softnet_data *sd = &__get_cpu_var(softnet_data);
unsigned long time_limit = jiffies + 2;
int budget = netdev_budget;
void *have;
local_irq_disable();
/*遍历轮询表*/
while (!list_empty(&sd->poll_list)) {
struct napi_struct *n;
int work, weight;
/* If softirq window is exhuasted then punt.
* Allow this to run for 2 jiffies since which will allow
* an average latency of 1.5/HZ.
*/
/*如果开支用完了或者时间用完了*/
if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
goto softnet_break;
local_irq_enable();
/* Even though interrupts have been re-enabled, this
* access is safe because interrupts can only add new
* entries to the tail of this list, and only ->poll()
* calls can remove this head entry from the list.
*/
/*获取链表中首个设备*/
n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
have = netpoll_poll_lock(n);
weight = n->weight;
/* This NAPI_STATE_SCHED test is for avoiding a race
* with netpoll's poll_napi(). Only the entity which
* obtains the lock and sees NAPI_STATE_SCHED set will
* actually make the ->poll() call. Therefore we avoid
* accidentally calling ->poll() when NAPI is not scheled.
*/
work = 0;
/*如果被设备已经被调度,则调用其处理函数poll函数*/
if (test_bit(NAPI_STATE_SCHED, &n->state)) {
work = n->poll(n, weight);//后面weight指定了一个额度
trace_napi_poll(n);
}
WARN_ON_ONCE(work > weight);
/*总额度递减*/
budget -= work;
local_irq_disable();
/* Drivers must not modify the NAPI state if they
* consume the entire weight. In such cases this code
* still "owns" the NAPI instance and therefore can
* move the instance around on the list at-will.
*/
/*如果work=weight的话。任务就完成了,把设备从轮询链表删除*/
if (unlikely(work == weight)) {
if (unlikely(napi_disable_pending(n))) {
local_irq_enable();
napi_complete(n);
local_irq_disable();
} else {
if (n->gro_list) {
/* flush too old packets
* If HZ < 1000, flush all packets.
*/
local_irq_enable();
napi_gro_flush(n, HZ >= 1000);
local_irq_disable();
}
/*每次处理完就把设备移动到列表尾部*/
list_move_tail(&n->poll_list, &sd->poll_list);
}
}
netpoll_poll_unlock(have);
}
out:
net_rps_action_and_irq_enable(sd);
#ifdef CONFIG_NET_DMA
/*
* There may not be any more sk_buffs coming right now, so push
* any pending DMA copies to hardware
*/
dma_issue_pending_all();
#endif
return;
softnet_break:
sd->time_squeeze++;
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
goto out;
}
这里有处理方式比较直观,直接遍历poll_list链表,处理之前设置了两个限制:budget和time_limit。前者限制本次处理数据包的总量,后者限制本次处理总时间。只有二者均有剩余的情况下,才会继续处理。处理期间同样是开中断的,每次总是从链表表头取设备进行处理,如果设备被调度,其实就是检查NAPI_STATE_SCHED位,则调用 napi_struct的poll函数,处理结束如果没有处理完,则把设备移动到链表尾部,否则从链表删除。NAPI设备对应的poll函数会同样会调用__netif_receive_skb函数上传协议栈,这里就不做分析了,感兴趣可以参考e100的poll函数e100_poll。
而非NAPI对应poll函数为process_backlog。
static int process_backlog(struct napi_struct *napi, int quota)
{
int work = 0;
struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
#ifdef CONFIG_RPS
/* Check if we have pending ipi, its better to send them now,
* not waiting net_rx_action() end.
*/
if (sd->rps_ipi_list) {
local_irq_disable();
net_rps_action_and_irq_enable(sd);
}
#endif
napi->weight = weight_p;
local_irq_disable();
while (work < quota) {
struct sk_buff *skb;
unsigned int qlen;
/*涉及到两个队列process_queue和input_pkt_queue,数据包到来时首先填充input_pkt_queue,
而在处理时从process_queue中取,根据这个逻辑,首次处理process_queue必定为空,检查input_pkt_queue
如果input_pkt_queue不为空,则把其中的数据包迁移到process_queue中,然后继续处理,减少锁冲突。
*/
while ((skb = __skb_dequeue(&sd->process_queue))) {
local_irq_enable();
/*进入协议栈*/
__netif_receive_skb(skb);
local_irq_disable();
input_queue_head_incr(sd);
if (++work >= quota) {
local_irq_enable();
return work;
}
}
rps_lock(sd);
qlen = skb_queue_len(&sd->input_pkt_queue);
if (qlen)
skb_queue_splice_tail_init(&sd->input_pkt_queue,
&sd->process_queue);
if (qlen < quota - work) {
/*
* Inline a custom version of __napi_complete().
* only current cpu owns and manipulates this napi,
* and NAPI_STATE_SCHED is the only possible flag set on backlog.
* we can use a plain write instead of clear_bit(),
* and we dont need an smp_mb() memory barrier.
*/
list_del(&napi->poll_list);
napi->state = 0;
quota = work + qlen;
}
rps_unlock(sd);
}
local_irq_enable();
return work;
}
函数还是比较简单的,需要注意的每次处理都携带一个配额,即本次只能处理quota个数据包,如果超额了,即使没处理完也要返回,这是为了保证处理器的公平使用。处理在一个while循环中完成,循环条件正是work < quota,首先会从process_queue中取出skb,调用__netif_receive_skb上传给协议栈,然后增加work。当work即将大于quota时,即++work >= quota时,就要返回。当work还有剩余额度,但是process_queue中数据处理完了,就需要检查input_pkt_queue,因为在具体处理期间是开中断的,那么期间就有可能有新的数据包到来,如果input_pkt_queue不为空,则调用skb_queue_splice_tail_init函数把数据包迁移到process_queue。如果剩余额度足够处理完这些数据包,那么就把虚拟设备移除轮询队列。这里有些疑惑就是最后为何要增加额度,剩下的额度已经足够处理这些数据了呀?根据此流程不难发现,其实执行的是在两个队列之间移动数据包,然后再做处理。
⑨ redis.conf详解之tcp-backlog
在 linux 系统中控制tcp三次握手 已完成连接队列 的长度。
在高并发系统中,你需要设置一个较高的 tcp-backlog 来避免客户端连接速度慢的问题(三次握手的速度)。
1. 已完成连接队列 的长度也与操作系统中 somaxconn 有关,取二者最小 min(tcp-backlog,somaxconn)
2. 已完成连接队列 又与 半连接队列 长度有关
3.简要介绍下 半连接 与 已完成连接
半连接 :服务端收到客户端 syn 后,将连接放入半连接队列。如果半连接队列已满会丢弃,客户端报错 connection time out 。
已完成连接 :服务端收到客户端的 ack 后,从半连接队列中拿出连接放入已完成连接队列。如果已完成连接队列已经满则无法放入,客户端报错 read timeout 或者 connection reset by peer
TCP queue 的一些问题
深入探索 Linux listen() 函数 backlog 的含义