❶ 单片机根据环境光照强度自动控制调节LED灯亮度
补充871的回答,其实是这么回事,使用AD转换芯片检测光敏电阻的阻值,使用单片机将电压转换为阻值,而阻值对应于光照强度。这样,最终就可以获得光照强度,利用光照强度去控制LED灯的亮度即可。当然,这种方法精度不高。AD转换芯片最常用的是ADC0809。
❷ 太阳能跟踪控制器的原理
由于地球的自转,相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,有效的保证太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。目前世界上通用的太阳能跟踪控制器都需要根据安放点的经纬度等信息计算一年中的每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,都要靠计算该固定地点每一时刻的太阳位置以实现跟踪。采用的是电脑数据理论,需要地球经纬度地区的的数据和设定,一旦安装,就不便移动或装拆,每次移动完就必须重新计算参数、设定数据和调整各个参数;原理、电路、技术、设备都很复杂,非专业人士不能够随便操作。河北某光伏发电设备公司独家研发出了具有世界领先水平、不用计算各地太阳位置数据、无软件、不怕阴天、雷雨、多云等各种恶劣天气、已经预设系统设备保护程序、防尘效果好、抗风能力强、简单易用、成本低廉、可在移动设备上随时随地准确跟踪太阳的智能太阳能跟踪控制器。该太阳能跟踪控制器在该公司第一代跟踪仪的技术基础上,综合各地各种环境下的使用情况,对太阳能跟踪控制器进行了全面的升级和改进,使该太阳能跟踪控制器成为全天候、全功能、超节能、智能型太阳能跟踪控制器。该太阳能跟踪控制器具有常态(好天气情况)下的对日跟踪状态和恶劣气候条件下的系统自我保护装态以及从自我保护状态自动快速转为常态对日跟踪三种情形。
该太阳能跟踪控制器是国内首家完全不用电脑软件的太阳空间定位跟踪仪,增加了GPS定位系统,具有国际领先水平,能够不受地域、天气状况和外部条件的限制,可以在-50℃至70℃环境温度范围内正常使用;跟踪精度可以达到±0.001°,最大限度的提高太阳跟踪精度,完美实现适时跟踪,最大限度提高太阳光能利用率。该太阳能跟踪控制器可以广泛的使用于各类设备的需要使用太阳跟踪的地方,该太阳能跟踪控制器价格实惠、性能稳定、结构合理、跟踪准确、方便易用。把加装了太阳能跟踪控制器的太阳能发电系统安装在高速行驶的汽车、火车,以及通讯应急车、特种军用汽车、军舰或轮船上,不论系统向何方行驶、如何调头、拐弯,该太阳能跟踪控制器都能保证设备的要求跟踪部位正对太阳!该太阳能跟踪控制技术属于具有我国自主知识产权的国家发明专利产品,发明专利申请号:200610146201.8 ,现已大批量投产。
❸ 太阳能板如何接入单片机要加蓄电池吗
要蓄电池,太阳能板给蓄电池充电,蓄电池经过电源转换板给单片机供电。
有蓄电池才能保证单片机持续工作,直接把太阳能板输出电压转换后供单片机使用,没有光或光弱时,单片机无法工作。
原理可以到淘宝搜一下太阳能控制器,通常有6个接口,2个是太阳能的正负端,有2个是接蓄电池正负端,还有两个是供电输出端,在供电输出端要自己再做个电压转换接单片机。
❹ 跪求...基于51单片机自动跟踪阳光太阳能热水器控制系统的设计
对绿色能源的开发和利用是响应我国节能减排,环保政策的举措,太阳能作为可持续,零污染,具有很高的环保价值和经济效益,高效利用太阳能还可以有效替代部分化石能源,从而降低因石化能源燃烧导致的污染,减轻雾霾。然而农村太阳能丰富,却没能得到很好的利用,即便现有的发电产品对太阳能电池板也大多采用固定支架。课题对此提出了能够跟踪太阳方向的云台支架,可实现太阳能电池板自动调节而始终面向光线最强的一面,提高太阳能发电的利用率。课题从云台,电机驱动,控制器,光线传感器,液晶显示等构成,课题成果不仅可以用到太阳能发电,还可以用到其它的向光场所,如天文观测等具有较高的实用价值。
随着时代的进步与科技的飞速发展,使得对能源的需求随之增加,对不可再生能源的过度依赖[1],从而使得不可再生能源的存储量急剧减少,一些不可再生能源(石油)被视为战略资源,据目前统计,煤炭、石油、天然气也会在岁月的实践中而日趋枯竭,消耗殆尽。这些不可再生能源的产生显然跟不上人类对其的需求,为更好的实现可持续发展,本课题提出了一种太阳追踪的可行方案,可以大大提升对太阳能的利用,减少对不可再生资源的过度依赖。
为了解决人们对不可再生资源的过度依赖和对清洁能源的高利用率。提出设计一款零污染高效率的装置——太阳追踪器。通过电机,控制器,采光板光线传感器等元器件之间的相互配合,实现对太阳光照射最强的方位,实现全方位无死角跟踪,恰巧正好急需这样一款具有安全、环保、高效率、以及取之不尽用之不竭的特点,也很方便就可以获取,如风能和潮汐能一样是绝对的无污染清洁能源,这也就很好的阐述了光能的可行性[2]。——对此提出太阳跟踪装置设计与制作。
优点:太阳作为一个取之不尽用之不竭的能源。在《太阳能利用技术》[3]就有相关的提到,所到达地球表面能量等同于每秒向地球源源不断的投放了500万吨煤炭。阳光所到之处,皆为财富,免费使用的同时也不需要考虑任何的运输费用以及零污染等特性。
缺点:即便如此的看似完美无缺,也存在着两个致命性缺点[4]:一是能流密度很小;二是太阳的光照强度也会因为(天气、白夜等)因素的不同而有着很大的差距,很难长时间维持在恒定值,这也在一定程度上大大的影响了使用效率[5]。
国外太阳追踪器:对太阳能的使用在两千零四年到两千零六年太阳能的发电量都是惊人的4961MW[6],在一九九七年,美国的Blackace研制了单轴追踪器,热接收率提高了百分之十五......,后期围绕高效率,轻质量展开。在太阳能游艇、太阳能飞机、太阳能瓦片等方面得到运用,也见证了太阳能利用的高效率性[7]。
国内太阳追踪器:在应用市场上面得到了不断扩张,对于太阳能追踪器的利用那也是一个相当热门的谈话主题,途径多年的经验,将其用在了太阳能热水器、太阳能路灯以及西部计划、利用太阳能发电、太阳能供暖等等[8]。
更多的往往是采用单轴跟踪的方式,相比之下更需要多轴,实现全方位无死角跟踪。
针对不同条件下,提出了自动控制和手动调节的两种工作方式:
其中以“自动模式”概述:在自动追寻的过程中,会自动判断光的强度的大小,若下面光照强度大于上面光照强度,STM32单片机就会直接驱动上端电机向下翻转;以便于在下午太阳西落的时候,获得更多的光照,若上面光照强度大于下面光照强度,STM32单片机就会直接驱动上端步进电机向上运动;若上下两个方位的光照强度均等,上端步进电机不进行动作。在上下光照均匀,左右方向运动的情况,右方位的光照强度大于左方位,STM32单片机就直接驱动下方位第一个步进电机向左方位一定角度转动;若左方位的光照强度大于右方位的光照强度,STM32单片机就直接驱动下方位第一个步进电机向左方位进行运动;当左右方位采光度也保持几乎均应的时候光照,那么下方位的第一个电机也将保持不动。
“手动模式”状态进行使用按键手动来完成设备状态的切换。四个按键对应控制电机完成:上、下、左、右的翻转动作。通过点动的方式来控制驱动步进电机的实际运动。
在给设备系统进行上电后,系统最初为“自动模式”,这样可以更好的在不受人为干预的情况下实现对太阳能的最大接收。
编译语言的选取
方案一:C语言
简洁紧凑、灵活方便;运算符的丰富性;数据结构的丰富性;结构式语言;语法局限性小,程序编写自由度大;通过对物理地址的直接访问,使得完全可以对硬件实现直接控制;程序执行效率高。
C语言面向过程,最主要的在于算法和数据结构。通过一个过程,对输入进行运算处理得到输出。
方案二:C++
C++语言是面向对象的语言,在C的基础上添加了面向对象、模板等现在程序设计语言的特性。拓展了面向对象设计的内容,使之更加符合现代程序设计的需要。
看似C++比C多了很多优点和特性,但C++并不是所有场合都适用,很多嵌入式开发系统,都只提供了C语言的开发环境,而没有提供C++的开发环境。很多C++语言不愿意干的脏活累活,C语言干起来快活得很。而C++因为过于复杂,在这方面就稍逊一筹了。
方案三:java
Java是一种解释性语言,Java人气极高,但其代码由于需要在运行前进行解释因此性能表现更差。C++会被编译为二进制形式,因此其能够立即运行且速度更快。两个程序都足够大、而且C++的代码经过优化,两者的速度差就会变得很显着甚至很惊人,C++会比java快很多。
从系统的复杂性出发来考虑,同时整个过程的计算量比较大,因此我选用了浮点数的计算方式,选用方案一作为整个系统编译方式。
2.2 控制系统总体方案选取
方案一:视日寻迹追踪模式
这样的一种模式,是基于天文学公式来得出太阳在不同时候的理论性的方位角和俯仰角,在后根据太阳每天在当地实际的运行轨迹位置编写控制算法程序,通过使用控制算法的方式来实现对太阳所在位置的计算,最后通过驱动太阳能板的两个步进电机来达到俯仰和方位上的转动。有点是对外界环境的依赖小,同是也存在弊端,那就是不管外界环境是何种天气,它都会以同样的工作方式运动,增加了不必要的能耗和元器件的寿命磨损。
太阳的俯仰角h和方位角A的两个位置参数,可表达如下所示:
δ为赤纬角,Φ是本地纬度,Ω表示太阳时角。
方案二:光电追踪模式
该模式的核心算法是利用光敏传感器对太阳位置进行检测。具体方法:在遮阳板两侧完全对称地安装光敏传感器,当太阳光垂直照射在太阳能光伏电池板上时,安装在两侧上的光敏传感器所产生的电信号相等,将这两路信号经过放大后送入比较器进行比较,此时不驱动步进电机进行转动。当太阳位置移动后,遮阳板对阳光进行遮挡,此时两侧的光敏传感器产生的电信号不相等,从而经过放大比较后产生差信号,电机开始运动,完成太阳跟踪过程。
通过两者的比较,选择方案二,简单易操作性,更适合被普及广泛使用,在同等使用条件下,最简方案,则是最优方案。
2.3主控系统选择
方案一:51单片机作为控制芯片。主要是表现在:主要控制参数是使用设置寄存器变量得以实现,在程序的修改方面,也是相当的方便快捷,成本也是相对低廉,性能与相对简单的太阳能跟踪装置系统匹配;数字化的控制系统,可以达到较高的精度。
方案二:采用FPGA这样的大规模可编程逻辑器件,但本题属于控制类,即现场可编程门阵列[WJ1] ,它是在PAL、EPLD等可编程器件的基础上进-一步发展的产物。
方案三:ARM作为一种高性能嵌入式系统。考虑到方案的可实行性,STM32可以很好的解决数据处理和控制功能,十分适用于太阳能跟踪,虽是ARM价格昂贵,但是在后期的可拓展空间更大。[WJ2]
结合本次设计的任务要求,以及上诉三种方案的相对比较,最后选用方案三更适合本课题的设计标准,具体采用STM32F103C8T6。
2.4电机选择
方案一:选择步进电机,然而步进电机的最大优点就是可以精确地控制电机步数和角度,缺点是价格昂贵。
方案二:选择直流电机。价格便宜是它的一大亮点,通过减速齿可以提高扭力,具有更大的负载,但是对电机的高精度控制直流电机达不到设计要求。
步进电机作为一种将电脉冲转换成相应角位移或线位移的电磁机械装置。通过直接控制输入的脉冲数量,直接控制其启停,启动是速度快,步距角和转速只取决于脉冲频率,受外界影响因素小。因此,对于本设计任务要求,为更精确地完成对角度值的精度把控,更好地利用太阳能,因此我选用方案一作为本次课程设计的驱动电机。
2.5步进电机驱动系统选择
方案一:L298专业电机驱动模块的选择,这类驱动模块的操作方便以及接口简单同时他们既可以驱动步进电机,也可驱动直流电机。
方案二:三极管等分立元件搭H桥。亮点在于实惠型,控制方式简单以及结构简单。优点的同时也伴随着弊端的存在,电流的承载能力比较小,相同的驱动能力受到限制,分立元件则体积较大同时稳定性也得不到保证。
方案三:采用集成芯片,ULN2003。 .
达林顿管ULN2003,该芯片最多可一次驱动八块步进电机,本设计作用于两个步进电机,在实际的使用中,往往起着放点输出的作用用于驱动大负载的步进电机等。
本次设计综合考虑,依据实际设计需求,选择方案三作为步进电机的驱动系统。
2.6实体结构框架选择
方案一:两电机互相处以垂直状态,电机一是左右的转动而电机二是上下的转动,在不引入外界条件辅助设备的情况下会出现运动死角,从成本化出发是不可取的。
方案二:将两个电机由之前的垂直安装,改变为大于90°的安装,在不引入外部设备的情况下,可以很好的避开运动死角,从而可实现全方位无死角跟踪,综合上述情况选择方案二进行本次的实体结构设计。
2.2系统设计
2.2.1 单片机构成如下图:
逻辑不通顺,要指出FPGA不适用于本题的缺点
STM32整体比FPGA便宜很多,这条论证建议修改,或者做一个成本对比表再下结论
控制方式:第一步就是将数据程序输入到输入设备里面,输入设备将程序传输给运算器CPU和存储器,各自程序都对应的传输到控制器里面,由控制器完成完成相互的指令传递,最后都是作用于输出设备,在输出设备上显示出来的结果就是最初程序所要表达的效果。
2.2.2 系统整体控制框图如下:
图2–2–2 系统整体控制框图
控制方式:完成整个驱动控制,第一步就是感光元件及光敏电阻传感器对外界光的采集,完成电压跟随,通过A/D转换,然后通过电压的比较,使用STM32F103C8T6单片机控制电机的驱动,最终完成不同电机在不同的光照强度情况下不同方向的运动,最后实现对光的最大化接收。
2.2.3 电机控制框图如下:
图2–2–3 电机控制框图
控制方式:通过光敏传感器对光的采集,实现了最后对电机运动方式的不同选择和控制。
当感光元器件第一组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成水平方向的电机正转,并返回最初状态。
当感光元器件第二组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成水平方向的电机反转,并返回最初状态。
当感光元器件第三组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成垂直方向的电机正转,并返回最初状态。
当感光元器件第四组接受到的光照强度值大于其它三个方位的光照强度时,那么电机完成垂直方向的电机反正,并返回最初状态。
当所有的感光元器件都处于接受管的均匀照射时,此时的光照强度几乎大小相等,也就电机的状态保持不运动。
2.2.4整体电路原理图如下:
图2-2-4 整体电路原理图
系统软件总体设计流程如图 2-2-4 所示。系统启动后,软件先进行初始化等工作,当程序初始化完成后,通过 感光元器件获得当前的光照强度,然后根据初始化的参数,控制步进电机将太阳能光伏板转动到理论的初始状态,预定方位。将太阳能光伏板转动到理论位置后,程序开始判断步进电机转动模式是手动模式还是自动,初始默认状态是自动跟踪模式。
当手动模式时,人为调整电机控制上下左右 4 个按键的状态,使得电机按照人们预想的方向进行运动,以此来得以控制四个方位的不同垂直转动和水平移动的俯仰角和方位角。当程序判断为自动模式后,开始自动读取检测电路的返回信号,当检测到是各个方位的光照强度值有较大的的差异是,那么单片机就发出控制指令控制步进电机进行转动,升压模块是为了给整个系统稳定供电而存在。
❺ 如何用传感器的信号控制步进电机
这个问题来时不是一个民用问题,你说的方法是要用多个传感器采集太阳光的强弱,通过数据处理和计算判定太阳的方向,从而给伺服机构提供驱动量。
其实,可以采用光桶采光的办法,只要一个传感器就可以了。当光照射到光桶内的光传感器上的时候,根据CCD矩阵的输出变化,就可以判断太阳的移动方向,从而定位明暗界面的法相为太阳移动的方向,进而给出驱动机构的控制量。
如果是简易的方案,简易你采用USB采集器,或者自己用单片机编程,做一个USB或者232接口的传感器。这样可以直接用机器读取传感器信息。
❻ 基于STC单片机的太阳能控制器设计
整个系统使用了以STM32F103C8T6单片机作为核心板、太阳能板、锂电池充电、稳压电路、光敏采集电路、驱动电路、升压稳压模块、步进电机、按键电路组成。整个系统共计有光敏采集板与主控板和两块板子,以对应的连接线进行相互连接。其中光敏采集板主要放置光敏传感器,模拟太阳能板的运作;另外的主控板起着对显示器、电源接通管理、按键接通控制以及步进电机的相关驱动。
具体控制展现如下:
一、太阳能板将太阳光能进行收集,收集的同时进行光能与电能的转换,通过电路的稳压过程,将电传递给备用电池进行电量的储存,在干锂电池经过升压模块和稳压模块稳压到5V给整个系统供电,有单独的电源控制开关可以进行电源的通断控制。在给设备系统进行上电后,系统最初的默认形式为随太阳运动而运动的“自动模式”,还有就是可以通人为控制改为“手动模式”[9]也是可行的。
二、在系统通电的情况下不管是属于自动还是手动模式,此时的光敏电阻都会采集光线强度,并且在显示屏上面进行完美的显示出来,其中显示的效果为上、下、左、右四个方位。通过两个步进电机驱动来完成上下左右运动,将两个步进电机焊接在一块形成了一个角度多自由度的整体。两个电机都是通过连接线与主板进行的连接,通过光敏电阻对光强度的采集获得四个方位的不同关照强度值,最后通过与预计值的比较,最后来确定电机的运动轨迹[10]。
三、其中以“自动模式”为例:在自动追寻的过程中,会自动判断光的强高度的大小,若下面光照强度大于上面光照强度,STM32单片机就会直接驱动上端电机向下翻转;以便于在下午太阳西落的时候,获得更多的关照,若上面光照强度大于下面光照强度,STM32单片机就会直接驱动上端步进电机向上进行运动[11];若上下两个方位的光照强度均是大小相差无几,那么上端步进电机则不进行任何的动作。接下来就是对于当上下光照均匀左右运动的情况,若右方位的光照强度大于左方位的情况下,STM32单片机就直接驱动下方位第一个步进电机向左方位一定角度转动[12];若左方位的光照强度大于右方位的光照强度,STM32单片机就直接驱动下方位第一个步进电机向左方位进行运动[13];当左右方位采光度也保持几乎均应的时候光照,那么下方位的第一个电机也将保持不动。那么此时此刻设备的状态将是完全的禁止,STM32单片机将不对电机给出任何的运动指令[14]。
三、也可以切换为“手动模式”状态进行使用按键手动来完成设备状态的切换。四个按键对应控制电机完成:上、下、左、右的翻转动作。通过点动的方式来控制驱动步进电机的实际运动[15]。
四、当太阳能采集受限的时候,那么此时就使用外部电源USB充电模块对其进行锂电池上电,以保障系统的正常运行[16]。
1.44寸显示屏显示了光敏电阻采集光强的数值范围为0-1000,在实际应用过程中不管是处于自动还是手动模式下工作,光敏电阻都可以通过上、下、左、右四个方位来进行光的采集。其中通过两个不同维度的步进电机驱动来实现,既是上下翻滚和左右转动。上端步进电机与光敏采集板直接像粘接,两板通过连接线直接焊接而成。当然了对其的封装也是很有必要的完善过程。
在原有的基础上还可以进行与外部设备进行搭配使用,比如在发电厂蓄电上的使用、对鱼塘中的制氧机进行提供供电、通过电红外传感器实现人走灯灭,蓝牙远程控制路灯等。
❼ 太阳能跟踪支架的原理
“人工智能向日葵”!
应该就是一个反馈系统,使用光线强度感应元件采集太阳光,然后通过电机进行调整,使感光元件光强度最大(即输出电压最大),即可。通过反馈系统判断调整过程中的强度差值进行控制电机运动补偿,就能够实现。
❽ 太阳光导入器的系统原理
在晴天的情况下,系统利用光导原理和系统的控制部分,实时跟踪太阳光,把阳光基本无衰减的传导到室内,在室外阳光比较好的情况下,光照的功率大约1KW/ m²,通过我们的系统传到室内关照功率大约为850W/ m²,保证了人们在阳光下的舒适度。
位使用的架构示意图
四、主要技术指标
1, 集光机的规格
1.1 透镜数和尺寸有三种:1镜 400mmф;3镜 400*3 mmф
1.2 三种透镜的受光面积和直径:1镜1167cm²、510 mmф;3镜3600 cm²、510*3 mmф
1.3 三种透镜的重量和全光束:1镜 30kg、3500lm;3镜34kg、10500lm
2, 光纤的选择
大概10平方米房间照明需要1根或2根光缆,通过2.5m光纤在室内的平均照度是阳光直接照度为9800lx的值。光纤有好多种,对采光用的光纤有石英性光纤、玻璃光纤、塑料光纤。我们这对不同的环境及用户需要选择不同类型的光纤,我们所用光纤给用户配的都是进口光纤,保证了光的传出质量。
3,传输距离
传输距离和选用的光纤有关,若选用德国石英光纤在50m内,阳光的舒适度和在室外一样,玻璃光纤和塑料光纤一般在25m内是最佳。现在所选用的光纤衰减都在0.1db/m,能全光谱通过。
4,面积
系统占地面积<1平米,总采光面积0.25平米。
5,使用温度
户外-25—+70 摄氏度.
6,光线隔离
有害紫外、红外隔离 (标配,可定做) <380nm波长紫外线隔离95%-99%,780—1800nm波长红外线隔离95%-99%。可见光380—710nm波长透过96%
7,系统的效果对比
对照组:60W的白炽灯,30cm处5000勒克斯。
天气情况 :标配10米光纤
晴天,无云
30cm处 4根 8000-12000勒克斯
晴天,薄云
30cm处 4根 3000-5000勒克斯
多云
30cm处 4根 100-300勒克斯
阴天
30cm处4根 10勒克斯以下
由以上测试数据可见,效果最好的时候,系统亮度超过120W灯的亮度。